
MSc Metrics, Mr. Michael Curran & Prof. Agust́ın Benetrix
HT 2013

MATLAB session
January 12, 2013

MATLAB session

Introduction

To get the most out of this course, you will need to work through the notes while using MATLAB. The notes
are accompanied by MATLAB m.files containing the codes and data files for this session’s exercises. With
some brief preliminaries, this introductory section illustrates how to set up MATLAB for the first time and
refers to a podcast illustrating a brief overview of the visual layout of MATLAB desktop on the computer.
The next section deals with some basic building blocks of MATLAB. Then, we will explore more advanced
features such as loops, plots and user written functions. The course will closely follow Frain (2010a) [1] and
his notes are more encompassing than these ones.

Preliminaries

MATLAB is short for Matrix Laboratory as it was originally designed to allow matrix multiplications and
students access to the library for performing numerical linear algebra, LINPACK, without learning FOR-
TRAN in the late 1970s by Cleve Moler at New-Mexico University. In the early 1980s, in tandem with
Jack Little and Steve Bangert, MATLAB was commericialised and its programming was then written and
compiled in C. Unlike more menu-driven econometric packages such as Microfit and EViews, MATLAB
sometimes requires the user to do more work. However, seeing what goes on under the black box can be
helpful for understanding methodology and allows greater control, especially in situations where we need to
be creative in our programming (e.g. utilising new econometric methods not yet incorporated in software
packages).

The main references for these notes are Frain (2010a) and Frain (2010b) [2] – they are highly recommended
reading for MATLAB and Stata, respectively, having a more in depth and broad treatment of much of the
theory in the first two sections of these present notes. They also contain an extensive review of alternatives
plus ways to manage your data, create reports, etc. They are also required reading for today’s session.

In organising your work, Frain (2010a) [1] suggests you do the following:

1. For each project, set up a new directory associated with that project (e.g. C:\Matlab\project1).

2. For each project, set up a shortcut for that project. In the shortcut, you should specify that MATLAB
starts in the directory for that project. This can be accomplished as follows:

• Open Windows Explorer and navigate to the directory containing the MATLAB.exe file; hold the
right button on your mouse to drag it to your project directory and then select ‘Create short cut
here’ from the menu that appears; if you already created a short cut to MATLAB in another
project directory, then you can copy it to your new project directory.

• In Windows Explorer, right click on the short cut, click on properties and then ensure the ‘Start
in’ box refers to your new project directory, e.g. C:\Matlab\project1.

3. Change the options in Windows explorer so full filenames (i.e. including the file extension) appear
when you search for files; the default setup in MS Windows is not to show file extensions. This can be
accomplished as follows: open Windows Explorer, select Organize -> Folder and search options

and select the View tab; then ensure that the box saying ‘Hide extensions for known file types’ is
unticked; finally, click Apply and click ‘Apply to Folders’ to reset all folders. See Frain (2010b) [2] for
a further discussion on this. Also see podcast1a available at www.michael-curran.com

MATLAB Desktop

See podcast1b available at www.michael-curran.com

1 of 6

http://www.michael-curran.com/
http://www.michael-curran.com/

MSc Metrics, Mr. Michael Curran & Prof. Agust́ın Benetrix
HT 2013

MATLAB session
January 12, 2013

Basics

Now having presented the rudimentary organisation of MATLAB, we will look at a first sample session to
develop the basic concepts and tools you will need for utilising MATLAB. In particular, given how MATLAB
is structured around a matrix-environment language, we will look at manipulations involving matrices first
before moving onto reading data into MATLAB and exporting output from MATLAB.

Matrices

See the sample MATLAB session file: matrices.m in conjunction with Frain (2010a)[1] section 2.

Data

See podcast2 available at www.michael-curran.com in conjunction with Frain (2010a)[1] section 3.

2 of 6

http://www.michael-curran.com/

MSc Metrics, Mr. Michael Curran & Prof. Agust́ın Benetrix
HT 2013

MATLAB session
January 12, 2013

Advanced

Having looked at basic matrix manipulation and data input/output, we now move onto more advanced
topics. First we will look at the construction of loops and then explore the creation of MATLAB graphics.
Since MATLAB allows us to write scripts (m files with a list of instructions), we will investigate these further.
Many toolboxes are available in MATLAB (e.g. Statistics, Optimisation, Parallel Programming, etc.) and
a few will be briefly mentioned here. This section will close with a few comments on the availability of
alternatives to MATLAB.

Loops

This subsection is based on Frain (2010a)[1] section 4. See the sample MATLAB session file loopplotfunc.m
available at www.michael-curran.com.

The four basic loops are:

1. if

2. for

3. while

4. switch

The syntax for if statements is as follows:

if conditions

statements

end

where conditions may include operators such as those in table 1

== equal && logical and (for scalars) short-circuiting
∼= not equal | logical or
< less than || logical or and (for scalars) short-circuiting
> greater than xor logical exclusive or
<= less than or equal to all true if all elements of vector are nonzero
& logical and any true if any element of vector is nonzero

Table 1: Operators.

If the conditions are true, then the statements are processed. The if statement can be extended to process
different statements depending on whether the conditions are true:

if conditions

statements1

else

statements2

end

Here statments1 are processed if conditions are true and statements2 are processed if conditions are false.
Finally, you can add extra sets of conditions with the elseif statement as follows:

if conditions1

statements1

3 of 6

http://www.michael-curran.com/

MSc Metrics, Mr. Michael Curran & Prof. Agust́ın Benetrix
HT 2013

MATLAB session
January 12, 2013

elseif conditions2

statements2

else

statements3

end

The structure of for loops is as follows:

for variable = expression

statements

end

The structure of while loops is as follows:

while conditions

statements

end

An advantage of the while loop over the for loop is that you do not need to know as much information (for
requires you to know exactly when and for how many occurences an operation will be repeated).

The structure of the switch loop is as follows:

switch a

case 1

x = 10

case 2

x = 15

case 3

x = 5

otherwise

error(’a must be 1, 2 or 3’)

end

Remark. You can use loops within loops too. When using loops to fill the elements of a vector or a matrix,
you should initialise the vector or matrix prior to doing so. However, matrix statements are more efficient
and easier to use than loops, so they are to be preferred, unless you must use loops.

Plots

See the MATLAB sample session loopplotfunc.m file.

User written functions

You may write your own functions and use them in the same manner you would use a pre-written MATLAB
function.1 See the example given with explanation on how to do this in section 7 of Frain (2010a) [1]. Also
see the MATLAB sample session myfunction.m called from loopplotfunc.m available at www.michael-
curran.com.

1Where m.files contain lists of instructions (i.e. script files), we are able to repeat analyses without having to retype all the
instructions, open datasets, etc. In effect, we can automate much of the work including documentation such as reporting and
publishing. The publish command is very useful and so is offloading through batch files.

4 of 6

http://www.michael-curran.com/
http://www.michael-curran.com/

MSc Metrics, Mr. Michael Curran & Prof. Agust́ın Benetrix
HT 2013

MATLAB session
January 12, 2013

Toolboxes

There are many MATLAB toolboxes, which are usually extra add-ons from the basic price. Among others,
they include the following.

Curve Fitting Toolbox provides graphical tools and functions for fitting curves and surfaces to data. Datafeed
Toolbox provides data from data providers into MATLAB through a series of function calls. Econometric
Toolbox has functions for modelling economic data. Financial Toolbox has functions for constructing mathe-
matical models with financial data and performing statistical analysis of financial data. Financial Derivatives
Toolbox contains functions for analysing equity and fixed-income derivatives. Fixed-Income Toolbox pro-
vides functions that can be used for fixed-income analysis and modelling. Global Optimization Toolbox
allows the user to search for global solutions to problems having multiple maxima or minima and nonsmooth
optimization problems. Optimization Toolbox contains algorithms for standard and large-scale optimization
problems. Parallel Computing Toolbox allows users to perform parallel computations on multicore proces-
sors, GPUs and clusters. Partial Differential Equation Toolbox includes tools allowing the user to study
and solve partial differential equations in two-space dimensions and time (using finite element methods).
Statistics Toolbox provides many algorithms and tools for organizing, analyzing and modelling data. Sym-
bolic Math Toolbox provides tools allowing the user to solve symbolic mathematical expressions and perform
variable-precision arithmetic; see also MuPAD.

You can visit www.mathworks.co.uk/help for more information on all toolboxes.2

Alternatives

While EViews has also traditionally been used in many masters programs for the time-series component of
econometrics, programs like Gauss, Mathematica, Octave, Scilab and R are closer in nature to MATLAB.
Octave is an open-source program that is very similar to MATLAB and discussed by Frain (2010a)[1]
along with Scilab and R in section 10. Without having access to MATLAB, one can download Octave,
Scilab and R for free. The first two are very similiar to MATLAB and so learning these can be useful
if one does not have access to MATLAB. My personal advice would be to use Octave if you don’t have
MATLAB, but if you really want to use open-source programs and you have the patience to work through
the ‘steep learning curve’, R is a very well worthwhile program to learn having a huge amount of non-
commercial support in terms of community groups. For more on free software for econometrics and economics,
see John Frain’s section of his website www.tcd.ie/Economics/staff/frainj/home.htm on Free software for
Econometrics: www.tcd.ie/Economics/staff/frainj/main/freeSoftware/freeSoftware.html.

2Frain (2010a) [1] provides a very good first treatment of the LeSage Econometric Toolbox in section 8 and in his appendix.

5 of 6

http://www.mathworks.co.uk/help/
http://www.tcd.ie/Economics/staff/frainj/home.htm/
file:www.tcd.ie/Economics/staff/frainj/main/freeSoftware/freeSoftware.html

MSc Metrics, Mr. Michael Curran & Prof. Agust́ın Benetrix
HT 2013

MATLAB session
January 12, 2013

*

References

[1] Frain, J.C. (2010a) ‘An introduction to Matlab for econometrics’ Trinity Economics Papers tep0110,
Trinity College Dublin, Department of Economics.

[2] Frain, J.C. (2010b) ‘Introduction to Stata with econometrics in mind’ Trinity Economic Papers tep0210,
Trinity College Dublin, Department of Economics.

6 of 6

	Introduction
	Preliminaries
	MATLAB Desktop

	Basics
	Matrices
	Data

	Advanced
	Loops
	Plots
	User written functions
	Toolboxes
	Alternatives

	*

