
Income stream Y1, Y2. These are endowments

u(C1, C2) = u(C1) + βu(C2)

C1 + S = Y1

C2 = Y2 + (1 + r)S

(Can also explicitly model bonds)

Intertemporal Budget Constraint:

C1 +
C2

1 + r
= Y1 +

Y2

1 + r

Take r as given and maximize. Two equations,

2 unknowns (C1 and C2). Get Euler equation:

u′(C1) = β(1 + r)u′(C2)
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Intuition (MC=MR).

Give up one unit of consumption today: lose
u′(C1) today.

Receive 1 + r units of consumption tomorrow
(r is a real interest rate). In utility terms, you
receive (1 + r)u′(C2) tomorrow.

But because of discounting, you value this by
only β(1 + r)u′(C2).

If we are at an optimum, we can’t raise utility
any further by doing this rearranging and hence

u′(C1) = β(1 + r)u′(C2)

In a multi-period model, this relationship holds
for any two consecutive periods. Therefore,
it nails down the entire lifetime consumption
profile.



E.g., Log utility

C2

C1
= β(1 + r)

Combine with budget constraint to get

C1(1 + β) = Y1 +
Y2

1 + r

C1 =
1

1 + β

(
Y1 +

Y2

1 + r

)
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Notes

• C today depends on lifetime resources; nat-

urally extends to more periods. Contrast

with C = C0 + βY .

• We could also model wealth effects. If re-

ceive bequest of A next period, then

C1 =
1

1 + β

(
Y1 +

Y2

1 + r
+

A

1 + r

)

• Precautionary savings. A given amount

of expected income has a lower certainty

equivalent level of income. Hence, un-

certainty acts like a fall in future income

and reduces consumption today, giving rise

to precautionary savings. As an example,

suppose income this period is 5 and next

period is either 0 or 10 with equal likeli-

hood. Thus expected income next period
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is 5. With precautionary savings, you will

value this expected (yet uncertain) income

less; say, it might be worth only 3 to you

(in terms of certain income.) In this case,

you will consume only 5+3
2 = 4 in period

one. Intuitively, you are very concerned

about the 0 eventuality next period, and

save more today as a precaution.



Aside on standard utility, u(C) = C1−θ
1−θ .

u′(C) = 1
Cθ

: θ governs degree of DMU.

1
θ is IES.

High θ implies person is satiated quickly; this

induces a weak substitution effect. Think of

salt: if all consumption goods were like salt, θ

would be very high. Indeed, θ is relatively high

in the data, implying people seek to eagerly

smooth consumption over time. As a result,

response to interest rate changes is low.
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Labour/Leisure Choice

Start with Static Model

maxc,l u(c)− v(l) subject to c = wl+d.

Note that u′′ < 0 and v′ > 0.

u′(c)
dc

dl
− v′(l) = 0 =⇒ u′(c)w = v′(l)

• Form of v(l). Labour-smoothing

• General Equilibrium (w = MPL)

• Can have corner solution

wu′(c) < v′(l) =⇒ l∗ = 0
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Participation (extensive margin). E.g., high

unemployment benefits, would raise d and re-

duce marginal utilty – and can thereby induce

non-participation. Effect would depend on size

of d and on θ from the utility function; how

quickly do you become satiated?



Suppose u(C) = C1−θ
1−θ , v(l) = 1

2l
2, and c = wl.

The consumer solves

max
l

(wl)1−θ

1− θ
−

1

2
l2

The first-order condition is:

w

(wl)θ
= l =⇒ l∗ = w

1−θ
1+θ

If θ > 1, dl
dw < 0, and the income effect domi-

nates.

If θ < 1, dl
dw > 0.

Empirical tests? Adjustment costs.
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Multi-period model

wu′(c) = v′(l)

Using standard utility, u(C) = C1−θ
1−θ , and v(l) =

1
2l

2, we have

w

Cθ
= l

Permanent Changes (Long-run Trends): By
the permanent income hypothesis, if w rises
permanently, C should rise permanently too.
Over time, therefore, w and C grow at around
the same rate, so if θ > 1, labour supply falls
over time. The fact that labour supply doesn’t
rise over time is strong evidence against θ < 1.

Temporary Changes: With a temporary change,
w rises and C only rises a little (since con-
sumers smooth the temporary rise in income
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over time.) As a result, l rises temporarily.

This mechanism is important over the business

cycle (where wages are mildly procyclical.)
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Two period model.

u(C1)− v(l1) + β(u(C2)− v(l2))

C1 +
C2

1 + r
= wl1 +

wl2
1 + r

The optimality conditions become:

u′(C1) = βu′(C2)(1 + r)

wu′(C1) = v′(l1)

wu′(C2) = v′(l2)
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Reading: Romer’s chapter on Fiscal Policy.

Example 1: A lump-sum tax (e.g., a property

tax)

u(C1)− v(l1) + β(u(C2)− v(l2))

C1 +
C2

1 + r
= wl1 +

wl2
1 + r

− T1 −
T2

1 + r

The optimality conditions become:

u′(C1) = βu′(C2)(1 + r)

wu′(C1) = v′(l1)
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wu′(C2) = v′(l2)

Because income falls, the consumer is poorer;

as a result, demand for consumption and leisure

will fall. For this reason, labour supply rises –

a pure income effect. Relative prices are not

distorted making this tax more efficient.

E.g., Labour supply of old during recession.

Likewise, lottery winners reduce their labour

supply.



Example 2: A rise in the tax rate on labour.

u(C1)− v(l1) + β(u(C2)− v(l2))

C1 +
C2

1 + r
= (1− t)wl1 +

(1− t)wl2
1 + r

The optimality conditions become:

u′(C1) = βu′(C2)(1 + r)

(1− t)wu′(C1) = v′(l1)

(1− t)wu′(C2) = v′(l2)

Note that because of consumption and labour
smoothing (same tax rates), the C and l vari-
ables will move together.
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If t rises, what happens? The budget con-

straint and first-order conditions must be sat-

isfied.

This depends on the interaction of the income

and substitution effects. Which dominates?

Long-run evidence suggests income effect dom-

inates, in which case labour supply would rise.



More formally and looking at the budget con-

straint and first order conditions:

• C could rise and l could fall (but this con-

tradicts budget constraint).

• C could rise and l could rise (but this con-

tradicts labour condition).

• C could fall and l could fall. C could fall

and l could rise. The latter are possible,

but it’s unclear which one. Formally, there

are income and substitution effects, and

either could dominate. What happens de-

pends on the functional form for utility.

Note that we could also have a tax on con-

sumption (e.g., VAT) or interest income.

11



Example 3: Higher tax rate, but revenue given

back. Edward Prescott story.

u(C1)− v(l1) + β(u(C2)− v(l2))

C1+
C2

1 + r
= (1−t)wl1+

(1− t)wl2
1 + r

+twl1+
twl2
1 + r

=⇒ C1 +
C2

1 + r
= wl1 +

wl2
1 + r

The optimality conditions become:

u′(C1) = βu′(C2)(1 + r)

(1− t)wu′(C1) = v′(l1)

(1− t)wu′(C2) = v′(l2)
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Revenue Neutrality: the government redistributes

the revenues. Overall, wages are lower, but

income remains the same. So there is a pure

substitution effect and no income effect. Labour

supply falls unambiguously. This can explain

the negative relationship between tax rates and

labour supply in the data.


