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already; they cant get collateral; they have criminal records, and so on.5 And those who are

liquidity constrained are stuck with the income they have. For this reason, with liquidity

constraints, we can have u′(C1) > u′(C2) and consumption tracking income. Consider the

usual two-period world. With a constraint of S1 ≥ 0 and when Y1 < Y1+Y2

2 , we must have

C1 = Y1 and C2 = Y2. However, if Y1 > Y1+Y2

2 , the consumer does not wish to borrow

anyway, so the liquidity constraint doesn’t matter (formally, we say the constraint doesn’t

bind in this case.) With liquidity constraints, the consumption function in the first period

is C1 = min{Y1,
Y1+Y2

2 }.

1.1 Multiperiod Version

Of course, in reality people live for many periods. In fact, it is common in macroeconomics

to assume people are infinitely lived ; namely, people live through their children and transfer

wealth intergenerationally via bequests. Happily for us, since this rule holds for any two

arbitrary periods, it holds for arbitrarily many periods too. Consider first what happens

in the case of three periods. The utility function is u(C1) + u(C2) + u(C3) and the budget

constraints are:

Y1 = C1 + S1

Y2 + S1 = C2 + S2

Y3 + S2 = C3

In accord with the transversality condition, there are no savings in the last period; i.e.,

S3 = 0. Combining these conditions—just eliminate all the S terms—gives Y1 + Y2 + Y3 =

C1+C2+C3. Then the first order conditions are u′(C1) = u′(C2) = u′(C3) ⇒ C1 = C2 = C3.

And then the solution is C1 = C2 = C3 = Y1+Y2+Y3

3 .

More generally, if you live for T > 3 periods, then the consumer’s problem:

5Liquidity constraints are often a result of adverse selection and moral hazard issues. In the case of adverse

selection, banks don’t raise interest rates too high, since high rates attract risky borrowers—or “lemons”—

who are unlikely to repay. Namely, borrowers who take out loans at high rights might do so, thinking they

mightn’t pay it back; for this reason, high rates might attract disproportionately risky borrowers. Instead

of raising rates, they just deny credit to some borrowers. Meanwhile, with moral hazard, banks may be

reluctant to lend anyone too much—“credit limits”—in case borrowers spend the money recklessly, in which

case they might default.
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max
{Ct}t=T

t=0

t=T∑

t=0

u(Ct) subject to
t=T∑

t=0

Ct =
t=T∑

t=0

Yt

The Lagrangian is

t=T∑

t=0

u(Ct) + λ

(
t=T∑

t=0

Yt −
t=T∑

t=0

Ct

)

The solution now is:

C1 =

∑T
i=1 Yi

T
= . . . = CT

That is, consumption again equals permanent income. And, finally if you will receive

assets, A, at some point, then:

C1 =
A+

∑T
i=1 Yi

T
= . . . = CT

1.2 Stabilisation Policy

Having presented the basic idea, I now turn to some applications. What are the implications

for fiscal policy? To see this, imagine you get a tax break of τ this period, thereby raising

current income to Y1 + τ . Following the analysis above, our consumption each period is

reduced to:

C1 = C2 =
Y1 + τ + Y2

2
,

and hence consumption today increases by only τ
2 . Therefore, according to the PIH tem-

porary government policies will have little power to stimulate the economy. To see this

formally:

∂C1

∂τ
=

1

2

And if—as in reality—you live for T periods:

∂C1

∂τ
=

1

T

Taking limits gives:

lim
T→∞

∂C1

∂τ
= 0,

that is, as consumers’ lifetimes increases, the stimulus becomes less and less effective.
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Continuing this example, with a permanent tax cut of τ—giving an income stream of

Y1 + τ and Y2 + τ—we have:

C1 =
Y1 + τ + Y2 + τ

2

⇒ ∂C1

∂τ
= 1

Thus, C1 rises one for one, and you rationally spend all of a permanent change. This way,

permanent changes in fiscal policy can have significant effects. But, almost by definition,

stabilization policy is temporary! Except for the cases when tax breaks are permanent—

mostly they’re not—and people are liquidity constrained, stabilization policy is ineffective

in theory. With binding liquidity constraints, people are hungry for money since they’re not

at their optima in the first place—so they’ll dutifully spend what they get.6

However, largely because of the PIH, economists are skeptical of the power of fiscal policy,

and as a result, regard monetary policy as the prime tool to stimulate an economy. Even

more striking is what happens when rational consumers take account of the government’s

intertemporal budget constraint (more on this later).

Recall that the basic Keynesian multiplier was 1
1−mpc .

7 The role of the multiplier was

central to the IS-LM and Keynesian cross analysis . But for temporary income changes—like

those in stabilisation policy—the PIH predicts the multiplier is very small. So if you think

about it, the PIH has large implications for Keynesian economics: a small multiplier effect

undermines much of its original appeal. Indeed, all of the current debates on fiscal policy

are essentially debates on whether the PIH is correct.

1.2.1 A Note on Interest Rates

A quick word about interest rates. The real ex post rate of return on something is given by

the equation:

r = i− π.

This indicates the real, purchasing power return on my investment.8 And this is all I care

about. This equation just captures the idea that inflation “eats away” at nominal returns.

Just think of the real interest rate as a measure of how many goods you get back (as I said,

6Having said this, if they expect to be liquidity constrained in the future too, they’ll save some to be less

liquidity constrained henceforth.
7To see this, recall that Y = C + I + G which means Y = c0 + mpc Y + I + G. This implies Y =

c0+I+G
1−mpc

⇒ ∂Y
∂G

= 1
1−mpc

.
8Strictly speaking, this is an approximation that is only valid for small levels of inflation.
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it’s much easier to think in terms of goods). For example, if r = .05, and if I lend you one

good, I get 1.05 goods in return.

Now, lots of investors lost out in the 70′s since they bought bonds and only after did

inflation rear its ugly head. This diminished their real returns. In other words, they lent

out money but the purchasing power of what they got back was much less. For instance, if

I lent $10 to someone a hundred years ago and I got a mere $12 back today, then, despite a

20% nominal return, this has hardly any purchasing value compared to what I lent out, given

the enormous price level increase in the interim. Ex post, then, inflation is the borrower’s

friend, since it reduces the real rate of interest or real burden of payment.

Speaking of which, what do I mean when I say you offered me a rate of interest, i?

Doesn’t the central bank—say, Bernanke—control i? Well, not really. Bernanke controls

what we call the federal funds rate: the rate at which banks lend to each other (so as to

satisfy their reserve requirements stipulated by the FED). But more important is the role

of long-run interest rates, which are set by market forces in financial markets. However, the

federal funds rate and all other interest rates generally move together. If the banks have

to pay more on loans from other banks, they’ll dutifully pass that on to customers in the

prime rate. And if the interest rates in the banks are high, then corporate bonds will have

to pay a higher return too. Bottom line is that all rates tend to move together. Because

all interest rates move together and we are only concerned with changes in interest rate, for

now I will refer to just “the interest rate.”

1.3 Interest rates and Intertemporal Choice

Which brings us to the next topic. Up until now, we have assumed away issues with interest

and discount rates. Although the main insights remain intact, it is interesting to ask: Under

what circumstances, do we deviate from perfect smoothing (assuming certainty)? Well, there

are two ways: Either we prefer the present or we are rewarded from postponing consumption.

Interest rates are a way to lure or seduce investors from perfect consumption smoothing; this

will tend to increase future consumption. Meanwhile, a low discount factor (β)—i.e., a high

rate of time preference—means you get more utility from consuming today; in contrast,

this will tend to decrease future consumption. But just to be clear: these issues are do

not overturn the main idea of consumption smoothing. One more thing: In this partial

equilibrium part of the course, we assume consumers take the interest rate as given.9

9In a general equilibrium setting, the interest rate is endogenous: it would change along with the level

of savings. In addition, to compensate for risk of default, the interest rate is often a function of the level
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First, I’ll derive the optimal conditions with Lagrangians and then present two other

ways.

Case when r 6= 0 and β 6= 1.

With these additional frills, utility is now:

max
C1≥0,C2≥0

u(C1) + βu(C2); β ∈ [0, 1]. (1.3)

The budget constraints for period one and two are:

C1 + S = Y1

C2 = (1 + r)S + Y2

Plugging the first into the second:

C2 = (1 + r)(Y1 − C1) + Y2

And manipulating this gives:

C1 +
C2

1 + r︸ ︷︷ ︸
uses

= Y1 +
Y2

1 + r︸ ︷︷ ︸
sources

After doing all this, the consumer’s problem reduces to:

max
C1≥0,C2≥0

U(C1, C2) = u(C1) + βu(C1),

subject to:

C1 +
C2

1 + r
= Y1 +

Y2

1 + r

Setting up the Lagrangian gives:

L = u(C1) + βu(C2) + λ(Y1 +
Y2

1 + r
− C1 −

C2

1 + r
)

Then taking first order conditions with respect to C1 and C2 gives:

u′(C1) = λ

of borrowing itself. For instance, because of increased borrowing, the Irish government must now pay a

substantially higher interest rate when it borrows.
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βu′(C2) =
λ

1 + r

Combining:

u′(C1) = β(1 + r)u′(C2)

This is the Euler Equation. Implicitly, this condition pins down the optimal path of

consumption. As before, to find the optimal level of C1 and C2, we must combine this with

the intertemporal budget constraint.

For instance if r = 0, we have:

u′(C1) = βu′(C2) ⇒ u′(C1) < u′(C2) ⇒ C1 > C2.

The reason C1 > C2? Consumers derive more utility from consumption in period 1; hence

the bias their consumption profile towards the first period. The opposite effect happens for

a positive interest rate, r > 0: consumption will rise over time.10 So, except for the case

where (1+ r)β = 1, we no longer have perfect consumption smoothing. If β(1+ r) = 1, then

we are—quite naturally—back to the same situation as before. In summary, the trajectory

of consumption over time depends on the “tug of war” between r and β.

1.3.1 Alternative Ways of Deriving Euler Equation

Conversion into One-Variable Problem

max
C1≥0,C2≥0

u(C1) + βu(C2)

Substituting

C2 = (1 + r)(Y1 − C1) + Y2

into u(C1) + βu(C2) gives

u(C1) + βu((1 + r)(Y1 − C1) + Y2).

Then, maximizing the above with respect to C1 (and noting the chain rule) gives

10Yet this only tells us that there will be positive consumption growth. It does not tell us whether

consumption falls in period 1 or not. For example, we could start off with β = 1, r = 0 and C1 = C2 = 10.

With a positive r, we would then have C1 < C2. But this could hold true even if C1 = 11 and C2 = 13 or

when C1 = 9 and C2 = 14.
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u′(C1)− (1 + r)βu((1 + r)(Y1 − C1) + Y2) = 0

Then substituting back in C2 = (1 + r)(Y1 − C1) + Y2 gives

u′(C1)− β(1 + r)u(C2) = 0 ⇒ u′(C1) = β(1 + r)u(C2).

Law of Equi-marginal Utility

The interest rate is the relative price of future consumption. Why? A high interest rate

makes future consumption cheaper. Because you give up one unit today and receive more

tomorrow in exchange, future units—i.e., future consumption—are now effectively cheaper.

Formally, the relative price of consumption in period 2 is 1
1+r . Now remember the law

of equimarginal returns—i.e., MUi

pi
=

MUj

pj
for all goods i and j— where you equated the

“bang per buck” across goods? One can view the Euler equation as a special case thereof,

where the “goods” refer to consumption in each period. Using this condition, equilibrium

quantities are then implicitly defined by:

u′(C1) =
βu′(C2)

1
1+r

Of course this is just our friend again.

Arbitrage

Suppose we are at the optimum C1 and C2. Then the marginal loss from reducing C1 by

one unit is u′(C1). Note that we get back 1+ r units which provide a utility of u′(C2). And

since next periods utility is discounted by β, the marginal benefit is β(1 + r)u′(C2). So,

overall:

u′(C1) . . .marginal cost

β(1 + r)u′(C2) . . .marginal benefit.

Now since we were at an optimum, the net gain to this change must be zero (else, it

wouldn’t have been an optimum!) Hence:

−u′(C1) + β(1 + r)u′(C2) = 0 ⇒ u′(C1) = β(1 + r)u′(C2)
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1.3.2 Multiperiod Version

With many periods, consumers solve:

max
{Ct}t=T

t=0

t=T∑

t=0

βtu(Ct) subject to
t=T∑

t=0

Ct

(1 + r)t
=

t=T∑

t=0

Yt

(1 + r)t

To solve this, we again use the Lagrangian technique. Assuming interest rates are con-

stant over time, the Lagrangian is

L =
t=T∑

t=0

βtu(Ct) + λ
t=T∑

t=0

(
Yt

(1 + r)t
− Ct

(1 + r)t

)
.

And with initial assets of A, this would be

L =

t=T∑

t=0

βtu(Ct) + λ

t=T∑

t=0

(
A+

Yt

(1 + r)t
− Ct

(1 + r)t

)
.

Implicit in the intertemporal constraint is the TVC.

Depending on whether the interest rate or discount rate force dominates, consumption

will either rise or fall over time. Solving this would yield a set of Euler equations: u′(C1) =

β(1 + r)u′(C2), u′(C2) = β(1 + r)u′(C3), u′(C3) = β(1 + r)u′(C4), etc. Note how this

implies u′(C1) = β3(1 + r)3u′(C4), and if interest rates were different, we’d have u′(C1) =

β3(1 + r1)(1 + r2)(1 + r3)u
′(C4); that is, consumption today depends on the path of future

interest rates. This way, we can relate consumption today to consumption far off in the

future and long-run interest rates.

1.3.3 Functional Form for Utility

So far, we have just derived an expression for the growth of marginal utility. Still, we

haven’t found the optimum levels of C1 and C2. Unlike the first case, we cannot simply

average income over time. But, considering both the Euler equation and budget constraint,

we now have two equations in two unknowns, C1 and C2. To solve for levels, we must posit

a functional form for utility.

The most common utility function in macroeconomics takes the form:

u(C) =
C1−θ

1− θ
, θ > 0

This implies marginal utility is

u′(C) = C−θ =
1

Cθ
.
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Note that the higher θ is, the more quickly DMU sets in. Moreover, it’s strictly concave

since:

u′′(C) = − θ

Cθ+1
< 0.

With this function, lifetime utility is:

U(C1, C2) =
C1−θ

1

1− θ
+ β

C1−θ
2

1− θ
.

Let’s talk about this for a moment. Consider θ. This parameter tells us how quickly

DMU sets in; to be specific, θ is the percentage fall in marginal utility when consumption

rises by one percent. Overall, it measures the curvature of the utility function. Graphically,

a utility function with a high θ flattens out quickly.11

Remember, you are concerned about the utility gain from shifting consumption around.

That’s all that matters. If DMU sets in really quickly, it makes no sense to have lot of

consumption in any given period. With DMU, what’s the point? Consider this: Instead

of having a lunch today and tomorrow, would you rather have two lunches today? Well,

no. Given DMU to lunch sets in pretty quickly, you aggressively try to smooth out lunch

consumption. And this level of aggressiveness has a name: the intertemporal elasticity of

substitution, which is mathematically given by 1
θ . Thus, if DMU sets in really quickly—

i.e., θ is high—your intertemporal elasticity of substitution is low. Because responding to

interest rates involves shifting consumption forward, this parameter measures how responsive

consumers are to changes in interest rates.

To see what I’m talking about, consider two goods: salt and luxury yachts. For a good

like salt, people want to consume only a little each day. In particular, they don’t want too

much salt in one period and none in the other (you see, food is tasteless without salt.) In

other words, there is sharply diminishing marginal utility to salt. As a result, the IES for

salt is likely very low. If all goods were like salt, would people increase reducing consumption

and savings in response to a higher interest rate. I doubt it. That means we’d have little

salt this period and lots next period—hardly an attractive option. By contrast, consider

the luxury yachts. Realistically, you could do without a yacht this period and have one

tomorrow instead. So for a good like this—that’s not essential—consumers would be more

willing to shift them around; formally, the IES for this good would be relatively high. The

overall IES for consumption depends of course on whether the average good is more like salt

11Notice that if θ > 1 this function is negative. Since utility is only used to compare things, this is just

fine. In this setting, if utility becomes less negative, there’s a welfare improvement; that’s all we’re interested

in.
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or yachts. The fact that the IES is low empirically suggests the average good is rather like

salt.12

As noted, θ governs how willing you are to shift consumption around. When we in-

corporate uncertainty into models, the parameter θ is called the coefficient of relative risk

aversion. It measures risk since risk entails the basic idea of valuing losses and gains. You

see, if DMU sets in really quickly (i.e., θ is high), then gains are basically worthless in terms

of marginal utility. Meanwhile, losses are still painful. Empirically, θ is often measured by

looking at people’s choices in risky situations. For instance, what the wage premia for risky

occupations?

Interest Rates

Assume now you are deciding how much of this period’s income to save. From now on,

I am also assuming the consumer is a saver in period 1. How does a rise in the interest

rate—say a doubling—affect your plans, in particular today’s consumption? Whether C1

rises or falls (relative to the previous optimal plan) upon a rise in interest rates depends in

part on the interaction of income and substitution effects. But, as we shall see, there are

three effects. First, there is the substitution effect ; as with all substitution effects, it deals

with the change in relative prices. Now that returns to saving are higher, you should “make

hay while the sun shines” and therefore save more. Put another way, a rise in the interest

rate makes today’s consumption relatively more costly. And this makes you consume less

today. In short, the substitution effect says: go for it, save more.

Second, there is the income effect : now you can attain a given level of savings (i.e.,

future consumption) with less work, so you are effectively richer. Equivalently, you are

richer, since the price of future consumption is now cheaper. And seeing you are now richer,

there’s less need for saving; you should consume more today (and next period). So the

income effect says: look, you’re now better off; save less.

So now what? Depending on the strengths of the income and substitution effects, con-

sumption can clearly go either way in period 1. Which effect is stronger?13 Happily for us,

though, we can actually tell which effect is stronger from the consumer’s utility function; in

particular, from the intertemporal elasticity of substitution. Because this tells us how extra

12One could rationalize this by saying consumers become attached to different goods over time. For

instance, 10 years ago, most people could have done without the internet. Yet, today, the internet has

become virtually essential—making it like salt, so to speak.
13For the second period, however, income and substitution effects go in the same direction. Note that the

substitution effect dictates more consumption in period 2 due to the lower relative price. The income effect

dictates more consumption in both periods.
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units of consumption are valued in a given period, it naturally governs the consumer’s de-

sire to shift consumption across periods. In turn, in this example, it governs the consumer’s

response to interest rate changes, and specifically the substitution effect (i.e., how willing is

the consumer to “transfer” consumption from this period to the next?). Turns out, if θ < 1,

the substitution effect will dominate the income effect. And it’s the other way round for

θ > 1; and of course effects just balance if θ = 1.

However, there is a third effect. A rise in the interest rate reduces the present discounted

value of lifetime income, Y1+
Y2

1+r . To see why, recall that the present discounted value gives

the value today of what I get in the future, Y1. Equivalently, it answers the question: what

do I have to invest today to get my future income, Y1. Therefore, with a large interest rate,

my future income is worth less today; namely, if the interest rate is larger I only need a

small amount today to get a given amount, Y1, in the future; as a result, my future claim is

worth less in today’s terms. In this sense, a higher interest rate reduces the today’s value of

future income and makes the consumer feel poorer. Because of this, a higher interest rate

works attenuates the income effect, making it more likely that the substitution effect will

dominate. Of course, the magnitude of this depends on how much income one has in the

future; if Y2 = 0, this effect is absent. For a younger person, therefore, this effect would be

larger.

An Example

Euler Equation with CRRA Utility

U(C1, C2) =
C1−θ

1

1− θ
+ β

C1−θ
2

1− θ

subject to

Y1 +
Y2

1 + r
= C1 +

C2

1 + r

The Euler equation, u′(Ct) = β(1 + r)u′(Ct+1), reduces to (setting β = 1
1+ρ ):

C2

C1
= (β(1 + r))

1
θ ⇒ C2 = C1 (β(1 + r))

1
θ

Combining with the intertemporal budget constraint gives

C1 =

(
Y1 +

Y2

1 + r

)
1

1 + (1 + r)
1
θ−1

β
1
θ

(1.4)
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The most important point to note here is that consumption depends on the present

discounted value of lifetime. As well, if the consumer attained assets of A in period two,

say, then C1 would become: C1 =
(
Y1 +

Y2+A2

1+r

)
1

1+(1+r)
1
θ
−1β

1
θ
. Note, too, that in the case

of r = 0 and β = 1, we get the familiar result, C1 = Y1+Y2

2 . The marginal propensity to

consume out out Y1 is

∂C1

∂Y1
=

1

1 + (1 + r)
1
θ−1

β
1
θ

.

Observe that ∂C1

∂β < 0, while the sign of ∂C1

∂r is indeterminate (without knowing θ.) And

because S1 = Y1 − C1, we have ∂S1

∂r = −∂C1

∂r , so the change in savings is opposite to the

change in consumption (since they are two sides of the same coin.)

Permanent and Temporary Changes

So far I have implicitly assumed changes in interest rates were permanent. By construction,

this had to be the case in a two-period world. However, whether a change in interest rates

is temporary or permanent matters a lot in a multi-period world. To see why, suppose

a consumer lives for fifty periods, and the interest rate rises temporarily in period one.

(Interest rates will revert to normal again in period 2.) Assume further the consumer

receives all income in period 1. What happens? Well, consider the income and substitution

effects. The substitution effect dictates the consumer should save more. The income effect

says the consumer is richer and should save less. But—and here’s the but—the income effect

is relatively weak in this situation. Namely, since the consumer lives for fifty periods and the

interest rate rises only for one period, the consumer doesn’t feel that much richer as a result.

Sure, he gets more interest on this period’s savings, but, alas, he lives for fifty periods. But

it’s the presented discounted value of all income that matters to him, and this is changed

relatively little. It should be clear that the income effect is smaller than in the case where the

interest rate rises permanently. By contrast, the strength of the substitution effect remains

the same. As a result, in the case of a temporary interest rate rise, the substitution effect

will likely dominate, and the consumer will respond by raising savings.

1.4 Uncertainty

In the case where the return and consumption are uncertain—most returns are uncertain—

we must put an expectations operator on the right hand side. A prominent source of

consumption uncertainty arises from a stochastic income stream. In this case, however, we
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typically know the distribution of consumption i.e., its statistical moments. So u′(C1) =

β(1+ri)u
′(C2) becomes u′(C1) = E1β(1+ri)u

′(C2), when the payoff ri is uncertain (formally:

when the payoff, ri, is a random variable.) The notation Et indicates expectation at period

t.

1.4.1 The Stochastic Euler Equation

From the standpoint of time t

u(ct) + Etβu(ct+1)

Writing in terms of savings s

u(yt − st) + Etβu((1 + r)st)

Differentiating w.r.t st gives

−u′(ct) + Etβ(1 + r)u′(ct+1) = 0

u′(ct) = Etβ(1 + r)u′(ct+1)

In this case, we can never nail down a consumption path ex ante. What we get are a

series of rules—contingent plans—that relate periods to each other. For instance, suppose

we have three periods and β(1 + r) = 1. The uncertainty relates to income uncertainty.

Then, from the standpoint of period 0

u′(c0) = E0u
′(c1) = E0u

′(c2)

That is, we set expected marginal utilities equal each period. Because of the uncertainty,

we can never ascertain the precise consumption path ex ante. However, the plan will change

as more information arrives. In this example, in period 1, when the period 1 uncertainty

has been revealed, you will set

u′(c1) = E1u
′(c2)

More concretely, we say there is a series of stochastic Euler equations for this problem;

namely

u′(c0) = E0u
′(c1)
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and

u′(c1) = E1u
′(c2)

Let’s consider a numerical example. Suppose income in period 0 is 5, while expected

income is 6 in period 2 and 10 in period 3. Looking forward from the standpoint of period 0,

you plan to consume 7 each period. So you consume 7 in period 1. But then period 2 arrives,

and, just for the fun of it, suppose income is 100. Are you going stick to your initial plan?

Of course not. Now expected lifetime income for the remaining periods is 100 + 10 = 55.

So you’ll plan to consume 55 in both. Formally, you set u′(c1) = E1u
′(c2). This way, the

consumption plan changes as you receive more information. 14

1.5 Precautionary Savings

From the stochastic Euler equation with (β(1 + r) = 1), we have (for periods 1 and 2)

u′(c1) = Etu
′(c2)

u′(y1 − s) = Etu
′((1 + r)(y1 − s) + ε)

where ε is the source of the uncertainty and Etε = 0, but σ2
ε 6= 0. So instead of receiving

(1+r)(y1−s) next period, the consumer will receive (1+r)(y1−s)+ε. Because Etε = 0, the

consumer still expects to receive (1 + r)(y1 − s). For instance, the consumer could receive

either (1+r)(y1−s)+100 with probability 1
2 or (1+r)(y1−s)−100 with probability 1

2 ; this

way, expected income is still (1+ r)(y1−s). Precautionary savings arise when the consumer

is particularly fearful of receiving the bad draw, (1 + r)(y1 − s)− 100.

To start with, consider a simple numerical example. Suppose ε can take value of either

1 or −1; this way, Etε = 0. Now consider the convex function, f(x) = x2.15 Therefore, in

period 1, we have Etf(x) =
1
2 (1)

2+ 1
2 (−1)2 = 1. Suppose now ε can take value of either 10 or

−10. In this case, Etf(x) =
1
2 (10)

2 + 1
2 (−10)2 = 100. The central point here is that greater

14As we will see below, this will not necessarily be the case the consumption plan will evolve this way.

This particular example demonstrates the case of certainty equivalence; i.e., where consumers do not engage

in precautionary savings.
15Technically, a convex function is one where a line joining any two points on the curve lies above the

curve. Intuitively, a convex function is one which gets disproportionately large in magnitude as we move in

certain directions.
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variance in ε raises Etf(x) when f is a strictly convex function.16 Following on from this,

if the u′ is a convex function and the ε in Etu
′((1 + r)(y1 − s) + ε) becomes more variable,

Etu
′(ct+1) will rise.17 According to the Euler equation, u′(ct) also rises; i.e., consumption

in period t falls and savings rises. For this reason, we say the rise in uncertainty induces a

rise in precautionary savings.

U’(C)  

 

 

 

 

 

 

 

 

 

 

 C 

Figure 1.1: If marginal utility takes this form, then precautionary savings will arise.

Intuitively, low levels of consumption lead to disproportionately high levels of

marginal utility. Because of this, consumers will fear “bad draws” and will save

more.

16Note that this is not the case if f is linear, for instance. Say f(x) = x. Now, when ε can take values of

1 or −1, Etf(x) = 1
2
(1) + 1

2
(−1) = 0. And when ε can take on values of −10 or 10 with equal likelihood,

then Etf(x) = 1
2
(10) + 1

2
(−10) = 0; i.e., variance does not matter for Etf(x).

17This property of marginal utility (shown graphically in Figure 1.1) is a feature of all standard utility

functions used in macroeconomics.


