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Preface

The goal of this module is to introduce more advanced econometric topics in
addition to building upon the first term’s work on Econometrics. The first two
chapters are background reading on measure theoretic probability and asymp-
totic theory that underlie most of what we will be covering in the course. They
relate to some of the work you covered in maths-camp in September. Most
proofs will be omitted as this course is primarily focused on applied economet-
rics, reflecting the majority of interests of the department and of many past
students of the MSc program. While theoretical aspects certainly are touched
upon throughout the course to provide some balance, these are not developed
in much detail. Some of you may end up working on theoretical issues at cen-
tral banks or even at academic institutes where you may decide to specialise in
theoretical economics and / or theoretical econometrics. The material in the
this course, particularly in the first two chapters will provide some elementary
foundations for later courses you may choose to take if you go in this direction.
At times, you may feel that what you are studying is rather theoretical. To
an extent, you are correct, but practically all of the MSc program is oriented
towards the practice of applied economics from a theoretical angle rather than
on developing your abilities towards the theorist route. Do not misinterpret
this, however! Certainly, you will be well trained to pursue theoretical eco-
nomics after this course and you will also be ready for further study or work in
applied fields too. What you take from this course will be extremely beneficial
for most areas (at least related to economics) you could choose afterwards, but
keep in mind that you will receive the most specific training from ‘on-the-job’
training, whereas here you will learn a great deal of transferable skills – e.g.
the use of Stata for most statistical computing, MATLAB for more creative,
advanced programming, presentation experience, project experience, a certain
amount of mathematical and problem solving skills and a greater appreciation
and understanding of issues in applied economics work in addition to a good
introduction to most of the main topics in theoretical and applied micro and
macro economists have been thinking about over the last ten to fifty years.1

1Stata and MATLAB seem to be the optimum combination of computer package skills
that form the toolbox of most economists, reflected in their wide use across both top American
and European schools. You will be hard pressed to find a problem in economics that neither
can be used for, though there are some rare instances where of course, more specialised
packages might have certain slight advantages; e.g. Mathematica for computing derivatives
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Since what I will be covering in the course will rely on definitions and theo-
rems from the first two chapters, I may neglect to define these theorems and
definitions from time to time; rest assured, if they are not explained in the
later chapters, they will be included in one of the first two chapters. While
the material is not directly examinable, you need to understand it to under-
stand many parts of the course and you could be examined indirectly on it,
for instance through applying the law of iterated expectations and law of total
probability to put bounds on some quantity of interest in a question relating
to chapter 3.

One recurring theme throughout the course will be identification. That is,
suppose we look at the entire population and want to know some statistic, for
instance the mean. Given the available information, what can we say about
the mean? What can we say about it if some observations are missing? What
bounds – if any – can we put on the mean so that we can tell it is between
these bounds? We will study this topic in detail in chapter 3 as a motivation
for the rest of the course.

Once we have dealt with the initial ‘housekeeping’ chapters, we will be
free to concentrate on the central part of this course. While this course is
provisionally called ‘Topics in Econometrics’, it could also be called ‘Stationary
Univariate Time Series’ for the amount of time we will be devoting to this
area. We will first cover the basics, some of you who took Econometrics before
will have covered this, i.e. auto-regressive, moving average and auto-regressive
moving average models, auto-correlation and partial auto-correlation functions,
and identifying, estimating, testing and forecasting with these models. These
topics will be the concern of chapter 4.

Chapter 5 is a further development of chapter 4 in relation to forecasting.
A shorter chapter, here we will devote time to discussing the use of forecasts
in model assessment as well as how to conduct forecast assessment itself. We
will conclude this chapter with an introduction to the problem of forecasting
with many predictors. For the interested reader, this topic could be further
explored once you have completed Prof Benétrix’ part of the course on vector-
auto-regressions (VARs), as the issues are most interesting in the multivariate
context.

Most of your study of econometrics thus far will most likely have centered
around linear models. However, when we are studying or trying to model
volatility for instance, non-linear models are essential. In fact anything that is
not a linear model, is non-linear, so while initially they may seem like special
cases, they are actually more general on further reflection. These models are
being more pervasively employed by the profession now. While initially they
were used in finance, with only the likes of Engle’s ARCH paper in 1982 that
won him the Nobel prize making any significant noise in macro, the advent of
the discovery of the Great Moderation – the decline in aggregate volatility in

in solving non-linear models or the Fortran language for raw power in number crunching
areas such as non-linear simulation for estimation and forecasting or OpenMP/MPI/CUDA
languages for parallel coding when you have big problems in terms of size and / or speed.
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most US time-series data since the early 1980s (see Kim & Nelson (1998), Mc-
Connell & Pérez-Quirós (2000) and Blanchard & Simon (2001) for original work
and Stock & Watson (2002) for the popularisation of the term they coined the
‘great moderation’) – has been accompanied by a huge growth in the use of non-
linear models in macroeconomics, e.g. the work of Jesús Fernández-Villaverde
at University of Pennsylvania, Juan Rubio-Ramı́rez at Duke University, Mar-
tin Uribe at Colombia University, Nicholas Bloom at Stanford University and
James Hamilton at UC San Diego to name but a few. Accordingly and given
the interest in this area, we will cover the three most popular non-linear models,
the ARCH model (and its variants), Markov Switching models and Stochastic
Volatility models. These models are the subject of chapter 6.

The typical method in macro is to formulate or cast a model into canonical
form (sometimes involving log-linear or nonlinear representations and possibly
linearising through Taylor series or log-linear approximations), solve a model
through specific techniques (linear: Blanchard & Kahn / Sims’ / Klein’s / unde-
termined coefficients approach or nonlinear: iteration (dynamic programming
/ value-function iterations / policy-function iterations), perturbation or pro-
jection (finite elements / orthogonal polynomials) techniques), prepare data
(remove the effects of seasonality or equivalently isolate cycles and remove
trends for example) including summarising time series behaviour when you
can observe all variables (e.g. ARMA / VAR models and summary statistics)
and representing it in an amenable form (the state space representation is a
popular form) and finally estimate the model and possibly run a number of
post-estimation exercises. After a brief discussion of the state-space form at
the start of chapter 7, which we will take as given, we will focus on modern
estimation and post-estimation techniques. Given a state at time s, say capital,
we will want to ‘filter’ an observable at the same time, say consumption at time
s. Once we have estimated our equation(s) through the whole observed time
period we may want to ‘smooth’ backwards the evolution of a variable given
the information we have up to and including the final period T . This is useful
for instance when estimating through ‘filters’ and then plotting ‘smoothed’ es-
timates through ‘smoothers’; filters use information up to but no further than
time t while smoothers use information on both sides (up to time T ). A study
of time-series would not be complete without an exposure to the flip-side of the
coin to the time domain, viz the frequency domain; note that this is a topic
where many results from the first two chapters will be relevant, particularly on
complex analysis. We rarely have closed form, analytic solutions in advanced
economics. True, there are a number of analytical methods to get around solv-
ing complicated multiple integrals too. Traditionally, we used tricks. However,
the modern approach makes use of simulation methods hitherto not possible.
Recent advances in micro and macro theory, statistics and computers allowed
econometricians to develop and apply sophisticated procedures at a relatively
low cost to bypass previously insurmountable problems and in some cases even
to significantly mitigate issues like the curse of dimensionality. Depending on
time, we will conclude this course with a brief introduction to the use of simu-
lation methods for practical purposes including a small bit of theory to provide
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justification for what we are doing with our computers. The idea is that when
we cannot obtain exact analytical solutions (at least not without great dif-
ficulty) or solve complicated multiple integrals, simulation methods provide
efficient methods for obtaining very good approximations to the solution we
are looking for. Loosely speaking, we can draw thousands of times to simulate
random variables from particular distributions and thereby obtain thousands
of answers whose distribution approximately converges (in some specific man-
ner) to the distribution of interest; loosely speaking this is a rough application
of the analogy principle.

You can find a bibliography at the end of the book in addition to an index
of terminology, names, etc. included in the chapters. Any mistakes are mine
alone and as this is a first rough draft, please email any comments you may
have to mpcurran@tcd.ie.
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Chapter 1

Probabilistic Foundations
Underlying Econometrics

There are plenty of measure-theoretic definitions to get through in this section
that underlie the rest of the course and hence it is important that you under-
stand this material. Let us think first about the real line, R. We know that
any interval [a, b] has length b− a and that any two disjoint intervals [a, b] and
[c, d] have length (b − a) + (d − c). We will say that b − a is the measure of
the set [a, b]. Measure theory essentially deals with extending these concepts
to arbitrary subsets of R. We will look for functions µ : F −→ [0,∞] where
F ⊂ P(R), the set of all subsets of R including R and ∅. If C ∈ F , then µ(C)
is the measure of C. Hopefully µ will be a function satisfying properties such
as the ability to measure every possible subset of R, the ability to add lengths
of disjoint intervals, to be invariant to translations, rotations and reflections
of the set C and to have measure one for the unit interval, i.e. µ([0, 1]) = 1.
However, there is no such function that exists on all the sets of P(R); see for
instance the Vitali sets. To solve this problem, we will have to modify the
property about being able to measure every possible subset of R and allow F
to be a strict subset of P(R); we must let it be a σ-algebra, which we need to
define – this leads us nicely into first section on probability spaces.

1.1 Probability Spaces

Definition 1.1. The sample space is the set of all possible outcomes from an
experiment and denoted Ω. Any element of the sample space ω ∈ Ω is called
an elementary event, while any subset of the sample space E ⊂ Ω is called an
event.

Definition 1.2. For any set S, the power set of S, P (S) is the set of all subsets
of S including the empty set and S itself.

Remark 1.3. Usually in experiments, we are concerned with computing the
probability of occurrence of particular subsets of the sample space. So we would

1
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like to define probabilities for each member of the collection of all subsets of
our sample space, i.e. the power set of the sample space. However, this is
only possible when the sample space is finite or countably infinite. There
exist uncountably infinite sample spaces where we can not do this, such as the
Cantor set. This motivates the next group of definitions where we need to
define particular subcollections of subsets of the sample space where we can
compute probabilities. Such subcollections of subsets turn out to have the
structure of a sigma algebra.

Definition 1.4. A non-empty collection F of subsets of Ω is called a σ-algebra
when

1. Ω ∈ F

2. A ∈ F =⇒ Ac ∈ F , where Ac is the complement of A.

3. For any countable {Ai}∞i=1 such that Ai ∈ F , ∪∞i=1Ai ∈ F .

Breaking this definition down, the first part says that the σ−algebra in-
cludes the sample space itself; the second part says that the σ−algebra is
closed under complementation; and the third part says that the σ−algebra is
closed under countable unions.

Remark 1.5. It follows from the definition that if {Ai}∞i=1 is such that Ai ∈ F ,
then ∩∞i=1Ai ∈ F ; this is since ∩∞i=1Ai ⊂ ∪∞i=1Ai ∈ F .

Remark 1.6. The powerset of any set is a σ-algebra of that set. While a
standard measure for use on such a σ−algebra is the counting measure (defined
shortly), the most important measure, viz. the Lebesgue measure (defined
shortly) is not defined on the powerset of R.1 As a rule of thumb, if Ω is at
most countably infinite, then the powerset of Ω is a useful σ−algebra (e.g. used
with the counting measure) but if Ω is uncountably infinite, then some other
σ−algebra should be used.

Definition 1.7. For any collection of sets A, let σ(A) denote the smallest
σ−algebra that contains all elements in A.

Definition 1.8. A measurable space is a pair (Ω, F ) of a set Ω and a σ−algebra
F . The subset E ⊂ Ω is called a measurable set if E belongs to F .

Example 1.9. Define the following experiment relating to the outcome of a
soccer match. The sample space Ω is:

Ω = {win,defeat,tie}
1While not part of this course, a simplified explanation – subject to controversy – has to

do with the fact that there are sets that cannot have a Lebesgue measure and so cannot be
in the σ−algebra; thus, since the powerset would include this set, the powerset cannot be
the σ−algebra to use with Lebesgue measure.

2
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and each of the three elements is an elementary event. Note that as the sample
space is finite, it is possible to think about the σ−algebra generated by the
power set of the sample space. Many different σ−algebras may be defined
from Ω, for instance:

F1 = {∅, {win,defeat,tie}} = σ(Ω)
F2 = {∅, {win,defeat,tie}, {win}, {defeat,tie}}
F3 = {∅, {win,defeat,tie}, {win}, {defeat,tie}, {defeat}, {win,tie}, {tie}, {win,defeat}} = P (Ω)

where F1 = σ(Ω) is the smallest possible σ−algebra and F3 = P (Ω) is the
largest possible σ−algebra. We can form a measurable space by combining the
sample space Ω defined above with any of these three examples of σ−algebras.

Example 1.10. For any k ∈ N, let Ω = Rk and consider the σ−algebras:

F1 = {∅,Rk, {0},Rk{0}}
F2 = σ({y ∈ Rk : y ≤ z, z ∈ Rk}})

Here (Rk, F1) and (Rk, F2) are two measurable spaces. While F1 is obviously
too small for general use in interesting applications, F2 appears to be more
adequate; actually, all subsets of Rk that are of practical interest are in fact
measurable with respect to F2, which makes F2 the standard, conventional or
implicit σ−algebra in Euclidean spaces denoted by B(Rk).

So far we have focused on sample spaces and sigma-algebras. Now we need
to provide a third component to complete basic measure theoretic definitions
of probability.

Definition 1.11. Let (Ω, F ) be a measurable space. We call P (·) a probability
measure or probability where P (·) is a function mapping sets in the σ−algebra
F to the set of real numbers when it satisfies the following three axioms:

1. P (E) ≥ 0 ∀E ∈ F

2. P (Ω) = 1

3. If E1, E2, . . . is a countably infinite sequence of pair-wise disjoint sets (i.e.
Ei ∩ Ej = ∅∀i 6= j) with Ei ∈ F for every i = 1, 2, . . ., then

P (∪∞i=1Ei) =
∞∑
i=1

P (Ei)

Remark 1.12. P is a set-valued function defined on the elements of F .; not
all subsets of the sample space are elements of F even though the whole sample
space is, which is why it is important that P is defined only on elements of
F . Note that the third axiom holds for finite sequences of of pair-wise disjoint
sets E1, E2, . . . , En since the ∅ ∈ F and therefore we can take the ‘tail’ of the
sequence to be empty sets. So we have the following lemma.

3
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Lemma 1.13. If E1, E2, . . . , En is a finite sequence of pair-wise disjoint sets
(Ei ∩ Ej = ∅ ∀i 6= j) with Ei ∈ F ∀i = 1, 2, . . . , n, then

P (∪ni=1Ei) =
n∑
i=1

P (Ei)

Proof. Omitted.

Example 1.14. Let Ω = [0, 1] and F be the smallest σ-algebra containing
all the open sets. This is called the Borel field. The measure on [0, 1] is the
Lebesgue measure (defined shortly) obtained by setting P [(a, b)] = b− a. Note
that all ordinary subsets of [0, 1] are Lebesgue measurable (defined shortly).

Example 1.15. For any A ∈ F ,

(Ω = A ∪Ac ∧A ∩Ac = ∅) =⇒ P (Ω) = P (A)︸ ︷︷ ︸
≥0

+P (Ac)︸ ︷︷ ︸
≥0

= 1

=⇒ 0 ≤
P (A)
P (Ac≤ 1

So probabilities must lie between 0 and 1. It can also be shown that the
probability of the set of all rationals on [0, 1] is 0, but that the probability of
the set of irrationals on [0, 1] is 1. In the first case, Georg Cantor (1845-1918)
showed that while the set of irrationals is uncountable, the set of rationals is
countable in 1873. Let {rj} be the set of rationals on [0, 1] and observe that
since the length of a point is 0, P (rj) = 0, so

∴ P (set of all Q) = P (∪∞j=1rj) =
∞∑
j=1

P (rj) = 0

This establishes that the probability of the set of all rationals on [0, 1] is 0.
Now let i be an irrational number, so P (i) = 0 since the length of a point is
zero. The set of all irrationals is the union of i where i /∈ Q, which we will call
I and we want to check the second equality here:

P (I) = P (∪i) ?=
∑
i

P (i)

Let R be the set of rationals. Note that [0, 1] = R ∪ I, which is a countable
union, I is measurable and R ∩ I = ∅.2 Since [0, 1] = Ω has length one:

P ([0, 1]) = 1 = P (R) + P (I) = 0 + P (I)

∴ P (I) = 1

2I am guilty of a slight amount of hand-waving here in that these results would need to
be proved in a longer maths course.

4
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Additional properties can be derived from the axioms and definitions and
are given in proposition 1.16.

Proposition 1.16. 1. P (Ac) = 1− P (A)

2. P (A) ∈ [0, 1]

3. P (∅) = 0

4. A ⊂ B =⇒ P (A) ≤ P (B)

5. P (A ∪B) = P (A) + P (B)− P (A ∩B)

Proof. Omitted.

Definition 1.17. A measure µ satisfies the following properties:

1. A ∈ A =⇒ µ(A) ≥ 0

2. µ(∅) = 0

3. If {Ai}∞i=1 ∈ A are disjoint, then µ(∪∞i=1Ai) =
∑∞
i=1 µ(Ai).

The difference between a probability measure and a measure it that for a
measure, P (Ω) = 1 is removed while µ(∅) = 0 is added; it can be shown that
a probability measure has the property that P (∅) = 0. Note that a measure
space is (Ω, F, µ), where Ω is the sample space, F is a σ-algebra defined on Ω
and µ is a measure with respect to the σ-algebra F ; notably, a measureable is
(Ω, F ) while the shorter word, measure space is (Ω, F, µ).

Finally, our goal in first part of this section has been to arrive at the defi-
nition of a probability space, which is defined as follows.

Definition 1.18. A probability space is the triplet (Ω, F, P ), where Ω is the
sample space, F is the σ−algebra defined on Ω and P is the probability measure
defined on the measurable space (Ω, F ).

Example 1.19 (Die roll). An example of a probability space is rolling a
die. Since the outcome of this is one element of the set {1, 2, 3, 4, 5, 6}, Ω =
{1, 2, 3, 4, 5, 6}. A natural choice for F = 2Ω = P (Ω), the powerset of Ω (set of
all subsets of Ω); hence, F includes all of the singletons {1}, {2}, . . . , {6}, all of
the two element subsets of Ω, etc. and ∅. A natural choice in the specification
of a probability measure here would be to suggest that the probability of any
singleton (often called a simple event) is 1

6 . For P to satisfy the additivity
property, this pins down the probability of all other events exactly. For exam-
ple, the probability of {1, 3, 6} is P ({1, 3, 6}) = P ({1}) +P ({3}) +P ({6}) = 1

2
since {1}, {3}, {6} ∈ F are disjoint and their union is {1, 3, 6}.

5
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Example 1.20 (Coin toss). Another example of a probability space is tossing
a coin. Toss a coin:

Ω = {H,T}
F = {∅, {H}, {T}, {HT}}
P ({H,T}) = 1 =⇒ P (∅) = 0
P ({H,T}) = P ({H}) + P ({T}) = 1

Toss two coins:

Ω = {HH,HT, TH, TT}
F = {∅, HH, . . . , TT, {HH,TT}, . . . , {HH,HT, TH}, . . . ,Ω}

Now for some results.

Definition 1.21. For two events A,B ∈ F , if P (B) > 0, the conditional
probability of the event A given B is defined as

P (A|B) = P (A ∩B)
P (B)

Proposition 1.22. Let B ⊂ Ω be such that P (B) > 0. Then the conditional
probability P (·|B) is a probability measure.

Proof. Omitted.

Example 1.23. Consider sequentially rolling two fair six-sided dice.

1. What is the probability that the sum of the rolls is 8?

2. What is the probability that the sum of the rolls is 8, given that the first
die roll is 2?

3. If the first die roll is 1?

4. Given that the sum of the dice rolled is 8, what is the probability that
the first die rolled displayed 4?

Denote the outcome of the first die roll by ω1 ∈ {1, 2, 3, 4, 5, 6} and the out-
come of the second die roll by ω2 ∈ {1, 2, 3, 4, 5, 6}. The sample space is
Ω = {(ω1, ω2) : ωi ∈ {1, 2, 3, 4, 5, 6}, fori = 1, 2}, containing the 36 elementary
events ω = (ω1, ω2). As both dice are fair, conclude that the elementary events
are equally likely to occur.

1. Observe that there are five elements in Ω such that ω1 + ω2 = 8 (i.e.
(2,6), (3,5), (4,4), (5,3), (6,2)); hence:

P ({ω1 + ω2 = 8}) = 5
36
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2.

P ({ω1 + ω2 = 8}|{ω1 = 2}) = P ({ω1 + ω2 = 8} ∩ {ω1 = 2})
P ({ω1 = 2}) = 1

6

3.
P (ω1 + ω2 = 8|{ω1 = 1}) = P ({ω1 + ω2 = 8} ∩ {ω1 = 1})

P ({ω1 = 1}) = 0

4.

P ({ω1 = 4}|{ω1 + ω2 = 8}) = P ({ω1 + ω2 = 8} ∩ {ω1 = 4})
P ({ω1 + ω2 = 8}) = 1

5

A shorter definition of conditional probability is the following.

Definition 1.24. For P (B) > 0, the conditional probability of event A given
event B is

P (A|B) = P (A ∩B)
P (B)

We will use the concept of conditional probability extensively in the topic
of identification.

Definition 1.25. For the set A, the collection B1, B2, . . . , Bn of subsets of A
is called a partition of A ⇐⇒

1. Bi ∩Bj = ∅ ∀i 6= j

2. ∪ni=1Bi = A

i.e. the collection is pair-wise disjoint and covers A exactly.

A useful theorem for identification analysis is the Law of Total Probability
(LTP).

Theorem 1.26 (Law of Total Probability). Let B1, B2, . . . , Bn be a partition
of the sample space Ω such that P (Bi) > 0 for all events in the partition. Then
for any event A, we have that

P (A) =
n∑
i=1

P (A|Bi)P (Bi)

Proof. Omitted.

The law of total probability (known by other names such as the partition
law or law of the extension of conversation) states that for events A and B

P (A) = P (A ∩B) + P (A ∩Bc)

For discrete random variables

P (Y = y) =
∑

x∈Supp(X)

P (Y = y|X = x)P (X = x)

7
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Theorem 1.27 (Bayes’ Theorem). Let the event A be such that P (A) > 0 and
let B1, B2, . . . , Bn partition Ω such that P (Bi) > 0 ∀i = 1, 2, . . . , n. Then we
have that

P (Bj |A) = P (A|Bj)P (Bj)∑n
i=1 P (A|Bi)P (Bi)

A simplified version of Bayes Theorem or Bayes Rule states that for any
two events A and B where P (B) > 0:

P (A|B) = P (B|A)P (A)
P (B)

For discrete random variables:

P (Y = y|X = x) = P (X = x|Y = y)P (Y = y)∑
y∈Supp(Y ) P (X = x|Y = y)P (Y = y)

Proof. By the definition of conditional probability:

P (A|B) = P (A ∩B)
P (B)

Applying the definition of conditional probability to P (A∩B) and rearranging,
we get Bayes Rule:

P (A|B) = P (B|A)P (A)
P (B)

Now we will move on to the concept of independence.

Definition 1.28. Two events A and B are said to be independent ⇐⇒

P (A ∩B) = P (A)P (B)

To generalise the definition to any arbitrary finite or infinite collection of
events, consider the following definition.

Definition 1.29. The events E1, E2, . . . , En are said to be (collectively) in-
dependent ⇐⇒ for any 2 ≤ j ≤ n and 1 ≤ k1 < · · · < kj ≤ n we have
that

P
(
∩ji=1Eki

)
= Πj

i=1P (Eki)

An infinite collection of events E1, E2, . . . are (collectively) independent ⇐⇒
for each finite n, the events E1, E2, . . . , En are independent.

Remark 1.30. The definition of independence for arbitrary collections of
events involves checking the multiplication condition for all possible (non-
singleton) subcollections. For example, with the collection A,B,C, we need
to check:

P (A ∩B) = P (A)P (B)
P (A ∩ C) = P (A)P (C)
P (C ∩B) = P (C)P (B)

P (A ∩B ∩ C) = P (A)P (B)P (C)

8
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To show the independence of E1, . . . , En it is necessary (but no sufficient) to
check the condition for all pairs Ei, Ej for i 6= j, which leads us to the (weaker)
definition of pair-wise independence.

Definition 1.31. Events E1, E2, . . . , En are pair-wise independent ⇐⇒ for
any pair of different elements in the collection Ei 6= Ej :

P (Ei ∩ Ej) = P (Ei)P (Ej)

i.e. any subcollection of two different elements of {E1, E2, . . . , En} contains
independent events.

Remark 1.32. (Collective) independence implies pair-wise independence, but
the converse does not necessarily always hold.

1.2 Random Variables

Random variable are functions from the sample space to real numbers, i.e. a
random variable assigns a real number to every element of the sample space.
But because we want to talk about probabilities in relation to random variables,
we will need to be careful about the measurability of the subsets of the sample
space on which our random variable takes any particular value, i.e. we will
require random variables to be measurable functions.

Definition 1.33. Let (Ω1, F1) and (Ω2, F2) be measurable spaces. We say that
the function f : Ω1 −→ Ω2 is measurable (F1/F2) ⇐⇒ ∀S ∈ F2, f

−1(S) ∈
F1.

Example 1.34. Any continuous function f : Rk1 −→ Rk2 .

Lemma 1.35. Let (Ω1, F1) be a measurable space, Ω2 an arbitrary set and A
an arbitrary collection of subsets of Ω2. Then f : Ω1 −→ Ω2 is measurable
(F1/σ(A)) ⇐⇒ ∀S ∈ A, f−1(S) ∈ F1

Proof. Omitted.

Remark 1.36. When Ω2 = Rk, we noticed that B(Rk) = σ({x : x ≤ z, z ∈
Rk}) is a suitable σ−algebra for practical purposes. Therefore, for any mea-
surable space (Ω1, F1), f : Ω1 −→ Rk is measurable ⇐⇒

{ω|X(ω) ≤ z} ∈ F1 ∀z ∈ Rk

This is quite a useful check for measurability. The definition of a measurable
function and this remark explain the rationale behind the following equivalent
definitions of random variable.

Definition 1.37. Let (Ω, F, P ) be a probability space. The following are
equivalent definitions.

9
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1. The function X : Ω −→ Rk is a random variable3 ⇐⇒ it is a measurable
function (F/B(Rk)).

2. The functionX : Ω −→ Rk is a random variable ⇐⇒ ∀z ∈ Rk, {ω|X(ω) ≤
z} ∈ F .

So, while a probability measure P : F −→ R takes sets and is a function
on σ-algebra F , a random variable X : Ω −→ R takes points is is a measure
on sample space Ω. The property of measurability is important if we want to
be able to integrate, i.e. in probability theory we take its expectation. Given
any Borel measurable subset of Rk, Q, we can define the probability that the
random variable X belongs to Q as

P (X ∈ Q) = P ({ω ∈ Ω : X(ω) ∈ Q}) = P ({ω ∈ X−1(Q)})

The set {X−1(Q)} is measurable by the definition of a random variable and
the choice of Q being Borel-measurable. The following proposition is a very
useful result.

Example 1.38. We know that a random variable is a measurable on Ω where
measurable means {ω : X(ω) < z} ∈ F ∀z ∈ R, i.e. all outcomes X(ω) < z,
ω ∈ F . For example, let X be the number of heads, so X(HH) = 2, X(HT ) =
1, etc.

{ω : X(ω) < z} = ∅ if z ≤ 0
{ω : X(ω) < z} = {TT} if 0 < z ≤ 1
{ω : X(ω) < z} = {HT, TH, TT} if 1 < z ≤ 2
{ω : X(ω) < z} = Ω if z > 2

Note F (z) = P (ω : X(ω) < z) where P : F −→ R:

F (z) =


P (0) = 0 if z ≤ 0
P (TT ) if 0 < z ≤ 1
P (HT, TH, TT ) if 1 < z ≤ 2
P (Ω) = 1 if z > 2

Proposition 1.39. Any measurable function of a random variable is also a
random variable.

Proof. Omitted.

The following example utilises the probability space that we constructed in
example ??.

3When k > 1, X is a random vector . We may assume that X takes also value ±∞.
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Example 1.40 (Example 1.19 continued, part (i)). Consider the following
lottery. Rolling a six-sided fair die once, if the outcome is an even number
then you receive e 100 whereas if the outcome is an odd number then you must
pay e 100. How might we represent your net profit as a random variable based
on the probability space constructed in example 1.19? Firstly, note that the
lottery can be expressed as:

X(ω) =
{

100 if ω ∈ {2, 4, 6}
−100 if ω ∈ {1, 3, 5}

A random variable is a real-valued measurable function ({ω : X(ω) < z} ∈
F∀z ∈ Rk) on Ω.4 From the definition, it is obvious that X(ω) is a real-valued
function defined on Ω. To check for measurability, recall that we need to ensure
G(t) = {ω : X(ω) < t} ∈ F . When t ≤ −100, then G(t) = ∅. When −100 <
t ≤ 100, then G(t) = {1, 3, 5}. When t > 100, then G(t) = Ω = {1, 2, 3, 4, 5, 6}.
Each of these sets is measurable because each set is in F . Therefore, X(ω) is
a random variable.

1.2.1 Distributions
Remark 1.41. It is possible to classify random variables into three categories:
continuous random variables, discrete random variables and mixed random
variables.5 Most of what we cover in this course will be expressed in terms of
either or both of the first two; however, it is not difficult to extend most of
what is said in this course to the case of mixed random variables.

Typically, we refer to the cumulative distribution function (CDF) of a ran-
dom variable as its ‘distribution’. The behaviour of a random variable is com-
pletely described by its CDF.

Definition 1.42 (CDF). The cumulative distribution function (CDF) of a
random variable X is given by

FX(z) = P (X ≤ z) = P ({ω : X1(ω) ≤ z1, . . . , Xk(ω) ≤ zk}) ∀z ∈ Rk

Next consider the properties of the CDF for k = 1.

Proposition 1.43. The function FX(z) is a CDF ⇐⇒

1. FX(z) is nondecreasing

2. FX(z) is right-continuous

3. limz−→−∞ FX(z) = 0, limz−→∞ FX(z) = 1

Proof. See Billingsley (2012), Theorem 14.1 [8].
4Technically, we call this a random vector when k > 1
5Note that a random variable is discrete if it can take on at most countably infinite many

values.
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So, a distribution function can only have jump discontinuities.

Definition 1.44. The support of a random variable X, SX is defined as

SX = {z ∈ Rk : ∀ε > 0, P (X ∈ Bε(z)) > 0}

where Bε(z) = {y ∈ Rk : ‖y − z‖ < ε} is the k−dimensional (open) ball of
radius ε. Intuitively, a point in Rk belongs to the support of X if with positive
probability X falls within any arbitrarily small neighbourhood of it.

Another complete representation of the behaviour of a random variable is
given by the probability mass function (PMF) in the discrete case and the
probability density function (PDF) in the continuous case. Discrete random
variables can take finite or countably infinite values, i.e. X(Ω) is either finite or
countably infinite. We can associate a certain mass of the distribution to each
of these value and thereby completely characterise the behaviour of a discrete
random variable by a function that indicates which is the probability mass of
each value that the random variable can take. This function is the PMF.

Definition 1.45 (PMF). The probability mass function (PMF) of a discrete
random variable X is given by

fX(z) = P (X = z) = P ({ω : X(ω) = z}) ∀z ∈ Rk

There is a one-to-one relationship between the CDF and the PMF – from
either, you can deduce the other. With discrete random variables, the points
in the support of X are those where fX(z) > 0 and they correspond to the
discontinuity points of the CDF.

Random variables are customarily denoted by upper case letters while the
values they can take are usually written in lower case letters. Let {xi}ni=1 (n
may be ∞) be the n possible values that X can take. To go from PMF to
CDF:

FX(z) = P (X ≤ z) =
n∑

i=1xi≤z

P (X = xi) =
n∑

i=1xi≤z

fX(xi)

and to go from CDF to PMF at point z, consider the behaviour of the CDF
as approach z from below. If the CDF remains constant at z, then the PMF
is zero and if the CDF jumps at z, then the PMF takes the value of the jump.
To compute the probability that X is in the set {y : y ≤ z} for some z, we can
use the CDF directly as:

P (X ∈ {y : y ≤ z}) = P (X ≤ z) = FX(z)

To compute the probability that X falls into any arbitrary (measurable) set Q,
we can use the PMF:

P (X ∈ Q) =
n∑

i=1xi∈Q

P (X = xi)

12
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Example 1.46 (Bernoulli Distribution). This distribution characterises a dis-
crete random variable that can take only two values, zero or one, so its support
is SX = {0, 1}. Its CDF and PMF are, respectively:

FX(z) =


0 if z ∈ (−∞, 0)
1− p if z ∈ [0, 1)
1 if z ∈ [1,∞)

fX(z) =


0 if z /∈ {0, 1}
1− p if z = 0
p if z = 1

Example 1.47 (Discrete Uniform Distribution). This distribution charac-
terises a discrete random variable that can take a finite number of values
{xi}ni=1 with equal probability. Without loss of generality (WLOG), take the
set {xi}ni=1 to be ordered and note that its support is given by SX = {xi}ni=1.
Its CDF and PMF are, respectively:

FX(z) =


0 if z ∈ (−∞, x1)
i/n if z ∈ [xi, xi+1) for i = 1, . . . , n− 1
1 if z ∈ [xn,∞)

fX(z) =
{

0 if z /∈ {xi}ni=1
1/n if z ∈ {xi}ni=1

A continuous random variable is a random variable that takes a continuum
of or uncountably many values, i.e. if X(Ω) is uncountably infinite. Unlike
the case of discrete random variables, since the probability that a continuous
variable is exactly any of the points in the support is zero, none of them have
any positive mass. The PDF characterises continuous random variables.

Definition 1.48. The probability density function (PDF) of a continuous ran-
dom variable X is given by

fX(z) = dFX(z)
dz

∀z ∈ Rk

To go from CDF to PDF, differentiate with respect to every coordinate. To
go from PDF to CDF, integrate with respect to every coordinate, where the
limit behaviour of the CDF pins down the value of the constant of integration.

Again, like the discrete case, to calculate the probability that X falls in the
set {y : y ≤ z}, we can use the CDF directly to compute

P (X ∈ {y : y ≤ z}) = P (X ≤ z) = FX(z)

Similarly to the discrete case, to compute the probability that X falls into any
arbitrary set Q (must be Borel measurable), we use the PDF:

P (X ∈ Q) =
∫
Q

fX(z)dz

13
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Example 1.49 (Continuous Uniform Distribution). This distribution is such
that the random variable takes values in an interval [a, b], a < b with equal
likelihood (EL). The CDF and PDF are, respectively:

FX(z) =


0 if z ∈ (−∞, a)
(z − a)/(b− a) if z ∈ [a, b)
1 if z ∈ [b,∞)

fX(z) =
{

0 if z /∈ [a, b]
1/(b− a) if z ∈ [a, b]

Example 1.50 (Normal Distribution). Possibly the most important distri-
bution in statistics, its success is mainly due to the Central Limit Theorems
(together with Laws of Large Numbers are about the most important theorems
of statistics, similar to the importance of the Fundamental Theorem of Algebra
for algebra or the Fundamental Theorem of Calculus for mathematical analy-
sis). The support of this continuous distribution is the whole real line, R. The
distribution is denoted by N(µ, σ2), where the two parameters µ (mean) and
σ2 (variance) characterise the distribution. The PDF is given by:

fX(z) = 1√
2πσ2

exp
(
−1

2
(z − µ)2

σ2

)
The CDF of this distribution has no closed form solution, but we can express
it as the integral of the PDF on (−∞, z] and most statistics books report the
relevant values for the standard Normal CDF (i.e. N(0, 1)). To deduce the
shape of (µ, σ2) for any value of µ and σ2 from the quantiles of N(0, 1), we can
use the following result.

Lemma 1.51. For σ > 0, X ∼ N(µ, σ2) ⇐⇒ X−µ
σ ∼ N(0, 1)

Proof. Omitted.

Example 1.52 (Chi-Squared Distribution). The support of this continuous
distribution is the non-negative real line, R+. It is characterised by one param-
eter, k, the degrees of freedom and denoted by χ2

k. The chi-squared distribution
with k degrees of freedom is simply the sum of the squares of k independent
random variables with standard Normal distributions, N(0, 1). Let X1, . . . , Xk

be independently6 distributed according to N(0, 1), then Y =
∑k
i=1X

2
i is a

new random variable with chi-squared distribution having PDF:

fX(z) =
{

1
2
(
z
2
) k

2−1 exp
(−z

2
) 1

Γ(k/2) if z ≥ 0
0 if z < 0

where Γ(k/2) is the Gamma function: Γ(1/2) =
√
π,Γ(1) = 1,Γ(n) = (n −

1)Γ(n− 1) ∀n = m/2,m ∈ Z,m > 2.
6Defined shortly.
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When k ≥ 2, we are dealing with multivariate random variables. The
definitions of CDF and PMF/PDF remain unchanged, but we say joint CDF
when referring to FX(z) ∀z ∈ Rk. For now let us restrict attention to bivariate
distributions, i.e. where k = 2. In this case, the joint CDF may be written as:

FX,Y (x, y) = P (X ≤ x ∧ Y ≤ y)

for any (x, y) ∈ R2. Everything we will do can be trivially extended to k ≥ 3.
The marginal distribution refers to the distribution of one of the components

of a random vector. To obtain the CDF of a marginal distribution, we can take
the limit of the joint CDF as the rest of the coordinates go to ∞:

FX(x) = lim
y−→∞

P (X ≤ x ∧ Y ≤ y)

FY (y) = lim
x−→∞

P (X ≤ x ∧ Y ≤ y)

for any (x, y) ∈ R2. From the marginal CDF, we can obtain the marginal PDF
(PMF) as per usual by taking derivatives of the marginal CDF (by deducing it
from the jumps of the marginal CDF). We can also deduce the marginal PDF
(PMF) from the joint PDF (PMF). For discrete bivariate random variables:

fX(x) =
∑
y∈SY

fX,Y (x, y)

fY (y) =
∑
x∈SX

fX,Y (x, y)

for any (x, y) ∈ R2. For continuous bivariate random variables:

fX(x) =
∫
fX,Y (x, y)dy

fY (y) =
∫
fX,Y (x, y)dx

We can go from the marginal PDF (PMF) to the marginal CDF as per usual
by integration (summation).

Remark 1.53. While we can derive the marginal functions from the joint
functions, the reverse is not true. The information in the marginal distribu-
tions pertain only to the random behaviour of each component in isolation
whereas the joint distribution contains all the relevant information about the
joint random behaviour of the random vector. So, in general, the totality of the
marginal distributions will not contain all the necessary information to derive
the joint distribution and we can see this by looking at an example where the
same marginals are derived from different joint distributions.

Example 1.54. Let the random variables X and Y be the result of two-coin
tosses, where 1 represents heads and 0 represents tails. Assume both coins are
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fair so heads and tails are equally likely outcomes. The marginal PMFS are:

P (X = x) =
{

1/2 if x ∈ {0, 1}
0 otherwise

P (Y = y) =
{

1/2 if y ∈ {0, 1}
0 otherwise

It can be shown that these marginals can be the result of the following two
joint PMFs:

1. X and Y represent independent draws of two fair coins so that the joint
PMF is:

P (X = x, Y = y) =
{

1/4 if (x, y) ∈ {0, 1}2

0 otherwise

2. X = Y which is the result of only one draw of a fair coin so that the joint
PDF is:

P (X = x, Y = y) =
{

1/2 if (x, y) ∈ {(0, 0), (1, 1)}
0 otherwise

Therefore, complete knowledge of marginals is obviously not enough to infer
the joint distribution.

Example 1.55 (Bivariate Normal Distribution). Let (X1, X2) be bivariate
normally distributed with mean (µ1, µ2) and variance-covariance matrix given
by Σ:

Σ =
(
σ2

1 σ12
σ12 σ2

2

)
Denote this by (X1, X2) ∼ BV N(µ1, µ2, σ

2
1 , σ

2
2 , σ12). By definition, the joint

PDF of (X1, X2) is given by

fX1,X2 (x1, x2) =

exp

 −1

2
(

1−
(
σ12
σ1σ2

)2
) ((x1−µ1

σ1

)2 +
(
x2−µ2
σ2

)2 − 2σ12
σ1σ2

(
x1−µ1
σ1

) (
x2−µ2
σ2

))
2π
√(

1 −
(
σ12
σ1σ2

)2
)
σ2

1σ
2
2

It can be shown that the marginal PDFs satisfy X1 ∼ N(µ1, σ
2
1) and X2 ∼

N(µ2, σ
2
2). Note that a complete knowledge of marginal PDFs does not give any

information about the parameter σ12. Therefore, the marginal distributions do
not provide complete information about the joint distribution.

By conditional distribution, we mean the distribution of a random variable
Y given that we already know another random variable, say X, takes a certain
value x. Like with conditional probability, the conditional distributions are
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only defined when fX(x) > 0. Denote the conditional CDF by FY |X=x(y) and
the conditional PDF (PMF) by fY |X=x(y). Conditional distributions can be
uniquely derived from joint distributions. The conditional PDF of Y |X (or
PMF) for any x such that fX(x) > 0 can be derived as follows:

fY |X=x(y) = fY,X(y, x)
fX(x)

For discrete case, note the interpretation: fY |X=x(y) = P (Y = y|X = x); the
interpretation is the same for the continuous case. The conditional CDF for
any x such that fX(x) > 0 can be derived as follows:

FY |X=x(y) =
∫ y

−∞
fY |X=x(s)ds =

∫ y
−∞ fY,X(s, x)ds

fX(x)

As we showed the conditional probability is a probability measure, it can be
shown that the conditional distribution satisfies all the properties of a distri-
bution as long as fX(x) > 0: FY |X=x(y) is non-decreasing, right continuous and
satisfies the limit properties limy−→−∞ FY |X=x(y) = 0 and limy−→∞ FY |X=x(y) =
1. As before with marginal distributions, while conditional distributions can
be derived from joint distributions, the converse is not true.

Example 1.56. Consider the following pair of degenerate conditional distri-
butions:

fY |X=x(y) =
{

1 if y = x

0 otherwise

fX|Y=y(x) =
{

1 if x = y

0 otherwise

which is the result of the experiment where X = Y . Simply by observing
the conditional distributions we cannot deduce the joint distribution. As an
example, this model may result from either of the following two cases: (i)
X = Y = 0 where all random variables are degenerate or (ii) X = Y ∼
N(0, 1) where there is randomness in the joint distribution but not in the
conditional distribution. This example highlights the fact that we can deduce
the relationship from conditional distributions that links the components of a
random vector but that we are missing how each component behaves separately.

In summary, we cannot go from marginal to joint or from conditional to
joint distribution, but we can go from joint to marginal and joint to conditional
distribution. Finally, we are able to combine the information contained by the
conditional and marginal distributions together to infer the joint distribution.
The definition of conditional PDF shows this immediately, if fX(x) > 0:

fY |X=x(y) = fY,X(x, y)
fX(x) =⇒ fY,X(x, y) = fY |X=x(y)fX(x)
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In fact we can extend this to those values of x such that fX(x) = 0. Whenever
fY |X=x is not defined, fX(x) = 0; hence, the definition of the marginal distribu-
tion fX(x) =

∫∞
−∞ fX,Y (x, y)dy = 0 together with the fact that fX,Y (x, y) ≥ 0

implies that fX,Y (x, y) = 0.

1.2.2 Moments
While all the relevant information regarding the distribution of a random vari-
able is contained in its CDF/PDF/PMF, for some families of distributions, a
set of moments of a random variable (quantities we derive from its distribution
that contain concise information usually with practical interpretation) may suf-
fice for a complete characterisation, e.g. the Normal distribution (mean and
variance); in general, moments provide insufficient information to completely
characterise the distribution of a random variable.

Definition 1.57. The expectation or expected value of a random variable,
denoted E(X) is the first moment of the distribution and is a measure of
central tendency. For discrete random variables X with SX = {x1, x2, . . . , xn}
and PMF fX(·), the expectation of X is a weighted average of the possible
values of X where the weights are provided by the PMF:

E(X) =
n∑
i=1

xifX(xi)

For continuous random variables X with PDF fX(·), with an analogous inter-
pretation the expected value is defined by:

E(X) =
∫ ∞
−∞

xfX(x)dx

We can extend the definition of expectation of X to random vectors where
E(X) corresponds to the vector of expectations of each component.

Definition 1.58. The conditional mean of a random variable Y conditional
on a realisation of the random variable X is defined as:

E(y|x) =
∑
y

yP (y|X = x) y discrete

=
∫
y

ydF (y|x) y continuous

Definition 1.59. The median is defined as:

Med(y|x) = inf{t : P (y ≤ t|x) ≥ 1
2}

The textbook definition usually replaces inf with min and ≥ 1
2 with = 1

2 .
The textbook definition fails in certain cases, for example if y does not have a
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smooth, continuous density function. When y is discrete, there is no solution,
e.g. the Bernoulli variable that takes value 0 with probability .2 and 1 with
probability .8. With the above definition, there is always a unique solution,
irrespective of whether the density is discrete or continuous. So, letting L
denote the loss function, E(L(·)|x) always has a solution when L(u) = |u|.
When we are dealing with symmetric distributions, the question of using means
versus medians does not matter, but it may matter a lot when we are dealing
with asymmetric distributions.

Building on the definition of the median, we can generalise to the α quantile:

Qα(y|x) = inf{t : P (y ≤ t|x) ≥ α}

Remark 1.60. While E(X) may exist and be finite, unlike medians E(X)
may exist and be infinite or it may not even exist.

Let

X+ =
{
X if X ≥ 0
0 if X < 0

X− =
{
−X if X < 0
0 if X ≥ 0

The expectation E(X) exists if at least one of E(X+) or E(X−) is finite,
in which case we define7

E(X) = E(X+)− E(X−)

Example 1.61. The Cauchy random variable, which is continuously distributed
with PDF

fX(x) = 1
π(1 + x2)

for x ∈ R, has no expectation.

If both E(X+) < ∞ and E(X−) < ∞ or equivalently E(‖X‖) < ∞, then
∃E(X) and is finite:

E(X) = E(X+)− E(X−)

Example 1.62. Consider X with SX = {2i : i ∈ N} where P (X = 2i) = 1/2i.
This is a probability distribution since

∞∑
i=1

P (X = 2i) =
∞∑
i=1

(
1
2

)i
= 1

and ∃E(X) since E(X−) = 0. However, the expectation is infinite:

E(X) =
∞∑
i=1

2iP (X = 2i) =
∞∑
i=1

2i
(

1
2

)i
=∞

7E(X) may be ∞ or −∞. For the rest of my notes, when I write E(X) I implicitly
assume that ∃E(X) (exists) but that E(X) is possibly infinite.
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Remark 1.63. Note that E(X) may lie outside SX . For example, if X rep-
resents the result of a fair coin toss and X = 1 stands for heads while X = 0
stands for tails, SX = {0, 1} and E(X) = 0.5.

More realistically, we may have a function of the mean or the median. We
have seen above that measurable functions of random variables are random
variables. Essentially, we can derive the distribution of a function of a ran-
dom variable X form the CDF FX(·). Furthermore, we can think about the
expectation of a function of a random variable.

Definition 1.64. For any random variable X : Ω −→ Rk and for any measur-
able function g : Rk −→ Rm:

E(g(X)) =
{∑n

i=1 g(xi)fX(xi) if X discrete , SX = {x1, x2, . . . , xn} and PMF fX(·)∫∞
−∞ g(x)fX(x)dx if X is continuous with PDF fX(·)

Remark 1.65. What about the relationship between E(g(X)) and g(E(X))?
Firstly, let us look at the case of linearity of g. Let X : Ω −→ Rk be a random
variable and let g : Rk −→ Rm be a linear function, i.e. gj(x) =

∑k
i=1 ajixi + bj

for j = 1, . . . ,m. Then

E(gj(X)) = E

(
k∑
i=1

ajiXi + bj

)
=

k∑
i=1

ajiE(Xi) + bj = gj(E(X))

While E(g(y)|x) = g(E(y|x)) for g linear, note that we also have results for g
concave and for g convex seen in Jensen’s Inequality. When a function is both
convex and concave, it is linear, so we have equality as above.

Lemma 1.66. Jensen’s Inequality Let X : Ω −→ R and g : R −→ R. Then

1. If g is concave, E(g(X)) ≤ g(E(X)).

2. If g is convex, E(g(X)) ≥ g(E(X)).

A nice, more general result applies to functions of the median. Note that
when f is a monotone function of y, Med(f(y)|x) = f(Med(y|x)).

Proposition 1.67. Let X ∼ N(µ, σ2). Then E(X) = µ.

Proof. Omitted.

Definition 1.68. If Y |X is a continuously distributed random variable with
conditional PDF FY |X=x(y), then

E(Y |X = x) =
∫ ∞
−∞

yfY |X=x(y)dy

while if Y |X is a discrete random variable with conditional PMF fY |X=x(y),
then

E(Y |X = x) =
∑
y∈ΩY

yfY |X=x(y)
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Remark 1.69. We can either view the quantity E(Y |X = x) as a determin-
istic function of the constant x or view the quantity E(Y |X) as a measurable
function of the random variable X, which implies that E(Y |X) is a random
variable. The next law characterises the expected value of the second interpre-
tation, E(Y |X) as a random variable. The next few definitions and results are
very useful tools in the analysis of identification.

Theorem 1.70 (Law of Iterated Expectations (LIE)). Given the existence
of expectations, E(E(Y |X)) = E(Y ). More concretely, the law of iterated
expectations can be stated as

E(Y ) = EX(E(Y |X))

=
∑

x∈Supp(X)

E(Y |X = x)P (X = x) discrete case

=
∫
x∈Supp(X)

E(Y |X = x)f(x)dx continuous case

Proof. For the continuous case, using fX,Y (x, y) = fY |X=x(y)fX(x) and
∫∞
−∞ fX,Y (x, y)dx =

fY (y):

E(E(Y |X)) =
∫ ∞
−∞

E(Y |X = x)fX(x)dx

=
∫ ∞
−∞

∫ ∞
−∞

yfY |X=x(y)dyfX(x)dx

=
∫ ∞
−∞

∫ ∞
−∞

yfX,Y (x, y)dydx

=
∫ ∞
−∞

yfY (y)dy

= E(Y )

As a corollary of LIE, E(E(h(Y,X)|X)) = E(h(Y,X)), so we could allow
the expression to depend directly on X.

Also note that the decomposition of variance is given by:

V (Y ) = EX [V (Y |X)] + V arX [E(Y |X)]

Next we will look at the variance, the second centered moment, which is a
measure of dispersion of the random variable about its mean.

Definition 1.71. When X is univariate, we can define its variance by

V (X) = E[(X − E(X))2]

So, if the distribution of X is very concentrated (dispersed) about its mean,
E(X), then we would expect low (high) values of (X−E(X))2 and thus, V (X)
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would be small (big). Note that V (X) > 0. By expanding the squares, we get
an alternative representation of the variance:

V (X) = E(X2)− E(X)2

We can show that ∃V (X) and V (X) < ∞ if E(|X|2) < ∞. But note that
unlike expectations, the variance operator is not linear:

Proposition 1.72. For constants a, b:

V (aX + b) = a2V (X)

Proof. Using the linearity of the expectation operator:

V (aX + b) = E[(aX + b− E(aX + b))2]
= E[(aX + b− (aE(X) + b))2]
= a2E[(X − E(X))2]
= a2V (X)

Definition 1.73. The square root of the variance is the standard deviation:
sd(X) =

√
V (X). Note that because the square root of a non-negative number

is a strictly increasing function, the standard deviation is also a measure of
dispersion of a random number around its mean.

Remark 1.74. The standard deviation is defined in the same units of the
expectation, i.e. if we scale the random variable by a certain factor, e.g. for
some a > 0, X ′ = aX, then the expectation is scaled by the same factor,
E(X ′) = aE(X) by linearity and the standard deviation is scaled by the same
factor, sd(X ′) = a[sd(X)]. However, the variance is scaled by the square of the
factor: V (X ′) = a2V (X).

For random vectors, the definition of the variance can be extended as fol-
lows. Let X : Ω −→ Rk be a column vector. Then the variance of X is:

V (X) = E[(X − E(X))(X − E(X))′]

So, the variance of a vector is a matrix. The standard deviation of a random
vector will be the ‘square root’ of V (X), i.e. it will be a matrix sd(X) such
that sd(X)2 = V (X).

Proposition 1.75. Let X ∼ N(µ, σ2). Then V (X) = σ2.

Proof. Omitted.

We can use the definition of the expected value to define higher centered
and uncentered moments of a univariate random variable.

Definition 1.76. The kth uncentered moment of a random variable is E(Xk).
The kth centered moment of a random variable is E[(X − E(X))k].
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So, the first moment is the mean and the second centered moment is the
variance. If we think of moments as integrals, then we can demonstrate that
the first k moments exist and are finite if the kth absolute moment is finite, i.e.
E(|X|k) <∞. This follows from two results in Billingsley (1995) [8]:

• ∃E(Y ) < ∞ (i.e. Y U is integrable with respect to the measure induced
by its PDF) ⇐⇒ E(|Y |) <∞ (Billingsley, 1995: 273) [8].

• If h ≤ k, then E(|Y |k) < ∞ =⇒ E(|Y |k) < ∞, which follows from
observing that h ≤ k =⇒ |x|h ≤ 1 + |x|k (Billingsley, 1995: 274) [8].

1.3 Radon-Nikodym Theorem

The next few definitions build up towards the Radon-Nikodym theorem.8 This
theorem allows us to avoid treating separately a mixture of continuous and
discrete distributions, e.g. truncated distributions. Most common probability
distributions are actually examples of Radon-Nikodym derivatives with respect
to a reference measure. For discrete random variables (probability functions),
the reference measure is the counting measure while for continuous random
variables (probability densities) the reference measure is the Lebesgue mea-
sure.9

Definition 1.77. Let X be a discrete random variable whose support is N.
The counting measure on N is

m(A) =
∞∑
k=0

1A(k)

where A ⊂ N and

1A(k) =
{

1 if k ∈ A
0 if k /∈ A

Note that if A is finite then m(A) is the number of elements of A and if A
is infinite then m(A) is infinity, i.e. the counting measure ‘counts’. The most
famous measure – at least for assigning measure to subsets of n-dimensional

8Johann Radon was from Austria and lived from 1887 to 1956. Otton Nikodym was from
Poland and lived from 1889 to 1974.

9Further examples of discrete distributions include binomial and Poisson distributions.
Further examples of continuous distributions include the student t and exponential distribu-
tions. Mixtures could be for instance a 50-50 mixture of binomial and student t for example.
A more realistic example would be a truncated variable. For instance, let us look at the
Tobit model. Let Y be expenditure on some durable good, X be income, Z be the sum of
all other expenditures and Y0 be the price of the cheapest durable good that is available.
Assume that the relationship between Y ∗ and X is linear, i.e. Y ∗ = β0 + β1X + ε where
Y ∗ is the solution of the associated maximisation problem and ε captures the effects of all
unobservable variables. We observe Y = Y ∗ if Y ∗ ≥ Y0 and Y = Y0 otherwise. When ε is
Normally distributed, Y is a mixture of a discrete and a continuous random variable.
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Euclidean space – is the Lebesgue measure.10 A thorough development of the
concept and properties of the Lebesgue measure is beyond the scope of this
course.

Definition 1.78. Let E ⊂ R. The Lebesgue outer measure λ ∗ (E) is defined
by

λ ∗ (E) = inf{
∞∑
k=1

l(Ik) : Ik is a sequence of open intervals with E ⊂ ∪∞k=1Ik}

Definition 1.79. The Lebesgue measure of E is its outer measure λ(E) =
λ ∗ (E) if

λ ∗ (A) = λ ∗ (A ∩ E) + λ ∗ (A ∩ Ec) ∀A ⊂ R

Example 1.80. Any closed interval [a, b] of real numbers is Lebesgue measur-
able with Lebesgue measure b− a; similarly, for (a, b).

Example 1.81. Any Cartesian product of intervals [a, b] and [c, d] is Lebesgue
measurable with Lebesgue measure (b− a)(d− c), the area of the rectangle.

Example 1.82 (A set that is not Lebesgue measurable). Here is an example
of a set that it is on the real line but is not the unit interval and is not Lebesgue
measurable. Let ζ be an irrational number, which could be the number zero
and let R be a sequence {rn} of all rational numbers. Let Eζ = {ζ + r; r ∈ R}.
Then we have that Eζ1 ∩Eζ2 = ∅ if Eζ1 6= Eζ2 . From each distinct set Eζ , take
one number η with the property that 0 ≤ η ≤ 1

2 . The set of all such numbers η
is not Lebesgue measurable. To see the proof of this result, consult Friedman
(1982) [32].

Let µ and ν be measurable on a σ−algebraA. We now consider a dominance
condition.

Definition 1.83. ν is absolutely continuous with respect to µ, denoted ν << µ
if

µ(A) = 0 =⇒ ν(A) = 0

Example 1.84. The probability measure ν is absolutely continuous with re-
spect to the counting measure µ (µ(A) = |A|) since the only set that has µ
measure zero is the empty set, which has ν measure zero also; hence, ν << µ.

10Another popular alternative and the one Lebesgue wanted to improve upon is the Rie-
mann integral, named after Georg Friedrich Bernhard Riemann (1826-1866) that essentially
breaks up a function into steps (along the x-axis). The outer limit tends to the inner limit and
vice-versa where both exist. Henri Lebesgue (1875-1941) approached this slightly differently
in his ‘Theory of measure and integration’, which he developed in 1901-1902, essentially mov-
ing the reference point to the y-axis. Lebesgue focused on the measure of sets and summing
over the value of the function times the measure of the set on which the function has that
value. The Lebesgue integral is the limit as the widths of strips (on the y-axis) shrink. It
turns out that the Riemann integral does not exist for the Dirichlet function (0 if irrational,
1 if rational), while the Lebesgue integral is one. The Lebesgue measure is σ-finite.
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Definition 1.85. Let (X,Σ, µ) be a measure space. If µ(X) < ∞, then we
say that the measure µ is finite, i.e. all measurable sets have finite measure.

We can weaken this to the following.

Definition 1.86. The measure µ is σ-finite if there exists a countable sequence
of measurable sets A1, A2, . . . such that Ω = ∪jAj ∧ µ(Aj) <∞ ∀j.

Theorem 1.87 (Radon-Nikodym). Let µ and ν be σ-finite measures on a
measurable space (X,Ω) such that ν << µ. Then there exists a nonnegative
function f such that

ν(A) =
∫
A

f(x)dµ(x) ∀A ∈ A

Furthermore, for two such functions F and G, µ({x ∈ X : f(x) 6= g(x)}) = 0,
i.e. f is unique up to at most a set of µ−measure zero. f is called a Radon
Nikodym (RN) density and is often denoted f = dν

dµ .

The RN theorem solves the problem of P (A|B) when P (B) = 0, saying
that it exists under certain conditions, but it does not tell us how to find it.
Note that the opposite direction is true: integration under a function yields a
measure. If ν, µ, λ are σ-finite, ν << µ and µ << λ, then ν << λ ∧ dν

dλ = dν
dµ

dµ
dλ .

To find the Radon-Nikodym derivative of a discrete probability space (one
where Ω is at most countably infinite):

1. define the sample space (N), the sigma algebra (P(N)) and two measures
(ν = P, µ = c) where c is the counting measure and P is the probability
measure;

2. verify conditions (ν, µ are σ-finite and ν << µ);

3. note that RN implies that there exists a unique f almost everywhere (see
definition 2.29) but you need to guess f (note that

∫
N fdc =

∑∞
i=0 f(i)

and show that
∫
A
fdc = P(A)).

Example 1.88 (Example 1.19 continued, part (ii)). The outcome of rolling a
die is certainly discrete (random variable takes on at most countably infinite
many values). Suppose that a random variable takes only natural number
values, so we could think of the sample space being N and let the σ-algebra
be 2N. Exercise: verify this is a σ-algebra, i.e. check the conditions from the
definition of a σ-algebra in definition 1.4 are satisfied for Ω = N and F = 2N.
Let ν be a probability measure on (N, 2N); ν is not a random variable as it is
not a function defined on the sample space (N), but it essentially does the same
job as our intuition regarding random variables by taking the formal random
variable X(ω) = ω. We want to show (WTS) that ν has a RN derivative with
respect to the counting measure µ. On (N, 2N) µ(A) = |A|, which is not a
probability measure since µ(N) =∞, so it is simply a measure. We know from
the RN theorem that if (Ω, F ) is such that F is a σ-algebra of Ω and µ and
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ν are σ-finite measures with ν << µ, then there is a nonnegative measurable
function f such that ν(A) =

∫
A
fdµ for each A ∈ F . Furthermore, f is unique

up to at most a set of µ-measure zero. To apply the RN theorem, we need
to carefully verify the conditions in our application. We claimed that 2N is
a σ-algebra of N. To show that µ and ν are σ-finite measures, we need to
show that there are a countably infinite or finite sequence of measurable sets
{Ai}∞i=1 ∈ F such that ∪∞i=1Ai = Ω and µ(Ai) < ∞ ∀i. Since the measure ν
is a probability measure, ν is σ-finite; this can be verified by taking A1 = Ω.
The counting measure µ on (N, 2N) is also σ-finite, which can be verified by
taking Ai = {1, 2, . . . , i}, so, µ(Ai) = i <∞ and ∪∞i=1Ai = N. We have already
demonstrated ν << µ earlier, i.e. ν(A) = 0 =⇒ ν(A) = 0. To repeat, the only
set that has µ-measure zero is the empty set, which must have ν-measure zero
also; hence, ν << µ. So, the RN theorem guarantees the existence of a RN
derivative.

Example 1.89 (Example 1.19 continued, part (iii)). While the RN theorem
guarantees the existence of a RN derivative, it does not explicitly tell us what
is is. Let’s take a guess that it is the ordinary discrete probability function,
f(n) = ν({n}). With this definition of f and that of the counting measure µ,
if we let A ∈ 2N, we get that∫

A

fdµ =
∑
i∈A

f(i) =
∑
i∈A

ν({i})

which is the same definition of ν(A) using the countable additivity property
of measures since A = ∪i∈A{i}, so ν(A) = ν(∪i∈A{i}) =

∑
i∈A ν({i}). So far

we have verified that f has the property that for any F ∈ 2N, ν(A) =
∫
A
fdµ.

The uniqueness part of the RN theorem shows that f is the only function with
this property up to perhaps a set of µ-measure zero. However, the only set of
µ-measure zero is the empty set itself, so f is completely unique. Therefore, we
have shown that the RN derivative theorem holds in the case of a probability
measure on (N, 2N) with respect to the counting measure and that the RN
derivative in this case is the familiar discrete probability function.

Recall that for conditional probability

P (A|B) = P (A,B)
P (B)

What if P (B) = 0?11 We can solve this through the use of the RN theorem as
follows. Let G,A ∈ F with probability space (Ω, F, P ) and define the measure
ν(G) = P (A ∩G) such that ν << P . RN implies that

P (A ∩G) =
∫
G

f(A|ζ)dP (ζ)

11As for how P (B) = 0 can occur, if we consider the thought experiment of throwing a
piece of chalk in a class room and measuring the distance from the blackboard to the chalk,
this distance that occurs will not happen twice.
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for some f . This makes sense when you think intuitively think about it. Call
f(A|ζ) the probability of A conditional on ζ ∈ G. So, RN solves the problem
of P (A|B) when P (B) = 0 saying that it exists under certain circumstances,
but RN does not tell us how to find it.
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Chapter 2

Asymptotic Theory

2.1 Stochastic Relationships

We will say more now about the relationships between outcomes of random
variables. While we have already defined the concept of independence for
events, we can also define independence for random variables. When X and
Y are independent, usually denoted X ⊥⊥ Y , then having information on any
one of them will not provide any relevant information regarding the outcome
of the other.

Definition 2.1. When X and Y are random variables, we say they are inde-
pendent ⇐⇒ ∀(x, y)

P (X ≤ x ∧ Y ≤ y) = P (X ≤ x)P (Y ≤ y) (2.1)

or equivalently in terms of the joint CDF and marginal CDFs

FX,Y (x, y) = FX(x)FY (y)

Remark 2.2. To extend this definition to cases of independence of more
than two random variables, note that the components of the vector of ran-
dom variables (not a random vector) X = (X1, X2, . . . , Xn) are independent
⇐⇒ ∀x = (x1, x2, . . . , xn) we have that

FX(x) = ΠN
i=1FXi(xi)

In addition, we may express the definition of independence in terms of PDFs
or PMFs instead of CDFs; we can go from the CDF definition to the PDF one
by taking derivatives and vice-versa by taking integrals. In fact, if X ⊥⊥ Y ,
then for any measurable set BX and BY in B(R)

P (X ∈ BX ∧ Y ∈ BY ) = P (X ∈ BX)P (Y ∈ BY )

In order to see this, express the condition defining independence in terms of
PDFS, i.e. fX,@Y (x, y) = fX(x)fY (y) and integrate both sides of BX ×BY∫
Bx×By

fX,Y (x, y)dxdy =
∫
Bx×By

fX(x)fY (y)dxdy =
∫
Bx

fX(x)dx
∫
By

fY (y)dy
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Furthermore, from the definition of independence with PDFs (or PMFs), we
can deduce that if fX(x) > 0 and X ⊥⊥ Y , then

fY |X=x(y) = fX,Y (x, y)
fX(y) = fY (y)

which (intuitively) means that if X ⊥⊥ Y , then knowing the value of X does
not provide any extra information about Y . Thus, the conditional distribution
of Y given X coincides exactly with the marginal distribution of Y .

From the concept of independence, we can define the important notion of
a random sample also known as an independent identically distributed (iid)
sample. This definition applies directly to random vectors as well, i.e. when
each Xi maps in to Rk.

Definition 2.3. We call the sample resulting from realisations of the random
variables X1, X2, . . . , Xn a random or iid sample if the following properties
hold:

1. X1, X2, . . . , Xn are independent;

2. each component Xi is distributed according to the same (identical) dis-
tribution.

The size of the random sample is n ∈ N.

The concepts of covariance and correlation are related to the degree of linear
relationship between two univariate random variables.

Definition 2.4. Whenever expectations exist, the covariance between two
univariate random variables X and Y is given by

cov(X,Y ) = E[(X − E(X))(Y − E(Y ))]

Proposition 2.5.

cov(X,Y ) = E(XY )− E(X)E(Y )
V (X) = cov(X,X)

cov(X,Y ) = cov(Y,X)

Covariance is related to the coefficient of best linear relationship between
X and Y , where best is in the sense of minimising mean squared error of pre-
diction: the sign of the covariance indicates the sign of the slope of this best
linear relationship. When the best linear relationship is positively (negatively)
sloped, (X −E(X)) and (Y −E(Y )) are expected to move in the same (oppo-
site) direction, so cov(X,Y ) is positive (negative). While covariance is a good
indicator of the direction of the relationship between X and Y , it is a poor
indicator of the strength of the relationship since it is not invariant to changes
in the scale of measurement; this arises because the covariance is a bilinear
operator.
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Proposition 2.6. The covariance operator is bilinear, i.e. for constants
{ax1 , ax2 , . . . , axk , bx} and {ay1 , ay2 , . . . , aym , by} we have that

cov

 k∑
i=1

axiXi + bx,

m∑
j=1

ayjYj + by

 =
k∑
i=1

m∑
j=1

axiayjcov(Xi, Yj)

In the special case where k = m = 1, this implies that

cov(axX + b+ x, ayY + by) = axbycov(X,Y )

Proof. Omitted.

So, if we change the scale of any two random variables X and Y , e.g. if
we compute the covariance of X̃ = axX and Ỹ = ayY for positive constants
ax, ay, then

cov(X̃, Ỹ ) = cov(axX, ayY ) = axaycov(X,Y )
so we will be changing the value of the covariance. This excludes the absolute
value of the covariance from being a suitable measure of the strength of linear
relationships.

Proposition 2.7.
X ⊥⊥ Y =⇒ cov(X,Y ) = 0

Proof. Omitted.

Example 2.8 (Memorize this point!). In general, the reverse is not true, i.e.
cov(X,Y ) = 0 does not imply that X ⊥⊥ Y . Let the random variable α take
values 0, π/2 and π with equal probability. Then ζ = sin(α) and η = cos(α)
are random variables and E(ζ) = 1/3, E(η) = 0 and E(ζη) = −, so ζ and η
are uncorrelated. However,

P (ζ = 1 ∧ η = 1) = 0 6= 1
9 = P (ζ = 1)P (η = 1)

Definition 2.9. The correlation coefficient between two random variables X
and Y , denoted ρ(X,Y ) is given by

ρ(X,Y ) = cov(X,Y )√
V (X)

√
V (Y )

= cov(X,Y )
sd(X)sd(Y )

provided sd(X) > 0, sd(Y ) > 0 and ∃cov(X,Y ).

Like the covariance, the correlation coefficient is symmetric and measures
the degree of linear relationship between two random variables. When it is de-
fined, the sign of the correlation coefficient coincides with the sign of the covari-
ance so it captures the direction of the linear relationship between two random
variables. If X ⊥⊥ Y , then ρ(X,Y ) = 0, but the reverse is not true in gen-
eral. However, unlike the covariance, the correlation coefficient has properties
that commend it as a suitable measure of the strength of linear relationships.
Before considering these properties, we must first define the Cauchy-Schwarz
Inequality.
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Proposition 2.10 (Cauchy-Scharwz Inequality). Let X and Y be two random
variables such that ∃E(XY ), though E(XY ) may be infinite. Then we have
that1

[E(XY )]2 ≤ E(X2)E(Y 2)

Proof. Omitted.

Corollary 2.11. Let X and Y be two random variables. Then |ρ(X,Y )| ∈
[0, 1], i.e. ρ(X,Y ) ∈ [−1, 1].

Proof. From Cauchy-Schwarz Inequality:

0 ≤ |E(XY )| ≤
√
E(X2)E(Y 2)

=⇒0 ≤ |ρ(X,Y )| = |E(XY )|√
E(X2)E(Y 2)

≤ 1

This demonstrates the advantage of the correlation coefficient over the co-
variance, i.e. ρ(X,Y ) ∈ [−1, 1]. Furthermore, the correlation coefficient is
robust to changes in scale and location of any of the two random variables.

Proposition 2.12. Let X and Y be two random variables. For positive con-
stants, ax, ay and arbitrary constants, bx, by, define X̃ = axX + bx and Ỹ =
ayY + by. Then we have that

ρ(X̃, Ỹ ) = ρ(X,Y )

Proof. Omitted.

Remark 2.13. The absolute value of the correlation coefficient is a measure of
the degree of a linear relationship. When |ρ(X,Y )| ≈ 0, the degree of the linear
relationship between two random variables X and Y is low; when |ρ| ≈ 1, the
degree of linear relationship is high; when ρ ≈ 1, there is a positive, direct linear
relationship; when ρ ≈ −1, there is a negative, opposite linear relationship;
when |ρ| = 1, there is a ‘perfect’ linear relationship.

Proposition 2.14. Let X be a random variable and let a, b be any constants
such that a 6= 0. Then for Y = aX + b

ρ(X,Y ) =
{

1 if a > 0
−1 if a < 0

Proof. Omitted.

1More generally for those interested, the Cauchy-Schwarz Inequality says that <

x, y >≤< x, x >
1
2< y, y >

1
2 for all vectors x and y of an inner product space where < ·, · > is

the inner product; defining inner product spaces formally is outside the scope of this course.
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2.2 Limit Results

We will first introduce some notation for stochastic order dominance, i.e. for
the rate of convergence of approximation error.

Definition 2.15. Let {xn} and {an} be two sequences of constants, i.e. they
are not random, i.e. they are nonstochastic. {xn} is a sequence of real numbers
and {an} is a sequence of positive numbers.

xn = O(an) as n −→∞

means that there is a constant M ∈ R,M <∞ :
∣∣∣xnan ∣∣∣ ≤M ∀ sufficiently large

n; sometimes we replace the conditions ‘sufficiently large n by ∀n ∈ N. So, the
sequence xn

an
is bounded. We say that ‘xn converges no slower than an’ or ‘xn

is at most order an.’

Definition 2.16. Let {xn} and {an} be two sequences of constants, i.e. they
are not random, i.e. they are nonstochastic. {xn} is a sequence of real numbers
and {an} is a sequence of positive numbers.

xn = o(an) =⇒
∣∣∣∣xnan

∣∣∣∣ −→ 0 as n −→∞

i.e. the sequence
∣∣∣xnan ∣∣∣ −→ 0 in the standard Euclidean metric space (R, d) as

n −→ ∞. We say that ‘xn converges faster than an’ or ‘xn is of smaller order
than an.’

Example 2.17. For the sequence

an = 3
n

+ 25
n2

The following hold:

1. an = O( 1
n )

2. an = o( 1√
n

)

3. an 6= o( 1
n )

For 1, we want to show (WTS):

3
n + 25

n2

1
n

is bounded. Observe that this reduces to showing that 3 + 25
n is bounded. In

fact this is less than 30 for all n. So, we have shown that the desired quantity
is bounded; therefore, an = O( 1

n ).
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For 2, WTS:
3
n + 25

n2

1√
n

−→ 0 as n −→∞

Equivalently, WTS:
3√
n

+ 25
n

3
2

and this goes to zero as n −→∞; hence, we get the result.
For 3, WTS:

3
n + 25

n2

1
n

does not converge to zero as n −→ ∞. Note that this reduces to showing this
for 3 + 25

n , which of course converges to 3 as n −→ ∞; hence, we have the
result.

Definition 2.18. Let {Xn} be a sequence of random (stochastic) variables
on a probability space (Ω, F, P ) and let {an} be a sequence of positive real
numbers.

Xn = op(an) =⇒
∣∣∣∣Xn

an

∣∣∣∣ p−→ 0 as n −→∞

We say that ‘Xn converges faster than an in probability’ or ‘Xn is of order
smaller than an in probability.’

Definition 2.19. Let {Xn} be a sequence of random (stochastic) variables
on a probability space (Ω, F, P ) and let {an} be a sequence of positive real
numbers. We write Xn = Op(an) to mean that ∀ε > 0,∃Mε < ∞∧ ∃Nε < ∞
such that

P

(∣∣∣∣Xn

an

∣∣∣∣ ≥Mε

)
= P (|Xn| ≥Mepsilonan) ≤ ε ∀n ≥ Nε

This condition is equivalent to

P

(∣∣∣∣Xn

an

∣∣∣∣ ≤Mε

)
≥ 1− ε ∀n ≥ Nε

We say that ‘Xn converges no slower than an in probability’ or ‘
∣∣∣Xnan ∣∣∣ is bounded

in probability.’

Remark 2.20. Note that for each of these concepts, an is the ‘rate’. Further-
more, we could allow for an to be a random variable. We can also allow for an
being possibly negative by saying Xn = op(an) if there is a sequence Yn such
that Xn = Ynan and Yn

p−→ 0; similarly, we could say that Xn = Op(an) if
there is a sequence Yn such that Xn = Ynan and Yn = Op(1).
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Example 2.21. Let {Zn} be an iid sequence of random variables from distri-
bution F . Then ∀M > 0, n ≥ 1,

P

(∣∣∣∣Zn1
∣∣∣∣ ≥M) = 1− P (|Zn| < M)

= 1− P (−M < Zn < M)
= 1− [F (M)− F (−M)]

In order to make P (|Zn| ≥ M) small, say less than some ε > 0, all we need
to do is to pick a sufficiently large M . It is possible to do this because as
M −→∞, F (−M) −→ 0 and F (M) −→ 1. Therefore, Zn = Op(1).

There are many useful results on relationships between the symbols for
order notation. However, this would bring us to far off course. Instead, we
will focus on limit results concerning sequences of random variables; Amemiya
(1985) is a good reference [2].

Definition 2.22. We say that the sequence of random variables {Xn}∞n=1
converges in probability to X (possibly a random variable) if ∀ε > 0

lim
n−→∞

P (|Xn −X| < ε) = 1

and we express this as Xn
p−→ X or equivalently plimn−→∞Xn = X.

Intuitively, the sequence of random variables {Xn}∞n=1 converges in proba-
bility to another random variable X if the realisations of their difference Xn−X
become arbitrarily concentrated around zero as n −→ ∞. Loosely speaking,
for any arbitrarily small ball with center zero, the realisation of Xn − X will
occur inside the ball with probability that converges towards one. Graphically,
the distribution of this difference tends to become more and more concentrated
at zero.

Definition 2.23. Let the sequence of random variables {Xn}∞n=1 have corre-
sponding CDFs {Fn}∞n=1 and consider the random variable X with correspond-
ing CDF F . We say that the sequence {Xn}∞n=1 converges in distribution to
X ⇐⇒

lim
n−→∞

Fn(z) = F (z)

for all continuity points z of F (·). We express this convergence in distribution
as Xn

d−→ X.

Remark 2.24. While Xn
d−→ X, this does not require that Xn−X is close to

zero in any (stochastic) sense. It is their CDFs that become increasingly similar.
Note further that convergence in probability is stronger than convergence in
distribution. Intuitively, Xn

p−→ X means that the realisations of Xn and
X become increasingly close in the stochastic sense, so their CDFs should
also become increasingly close. However, while the distributions are getting
increasingly closer, this does not necessarily imply that the actual realisations
are close in any sense. We see this in the lemma 2.25.
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Lemma 2.25.
Xn

p−→ X =⇒ Xn
d−→ X

Proof. Omitted.

Lemma 2.26. Xn
d−→ X does not necessarily imply that Xn

p−→ X.

Proof. See the following counter-example.2

Example 2.27. Let {Xn}∞n=1 be independent draws from N(0, 1) and let
X ∼ N(0, 1) also; hence, Xn

d−→ X. However, since a linear combination of
Normally distributed random variables is also Normally distributed and draws
are independent, Xn −X ∼ N(0, 2). So, taking any arbitrary ε > 0:

P (|Zn − Z| < ε) = 1− P (|Zn − Z| ≥ ε)
= 1− P (Zn − Z ≥ ε ∧ Zn − Z ≤ ε)
= 1− [P (Zn − Z ≤ ε) + P (Zn − Z ≤ −ε)]
= 1− [1− P (Zn − Z < ε) + P (Zn − Z ≤ −ε)]
= P (Zn − Z < ε)− P (Zn − Z ≤ −ε)
= Φ(ε)− Φ(−ε)

which is a positive constant. For example with ε = 0.1, P (|Zn − Z| < ε) =
0.0797 < 1. As we have shown this for an arbitrary choice of ε, it holds for all
ε.

However, the converse also holds for the special case when the limiting
random variable is degenerate at a certain value (i.e. if X = c with probability
one). The intuition behind this example is that if Fn is converging to F but
F is degenerate at c, then the realisations of Xn are becoming increasingly
concentrated at c; hence, Xn

p−→ c.

Lemma 2.28. If Xn
d−→ X and X is degenerate at c, i.e.

FX(z) =
{

0 if z < c

1 if z ≥ c

then Xn
p−→ X.

Proof. Omitted.

2Some people disagree with the terminology ‘counter-example’. If something is true (in
the sense that X does not imply Y ), then we can show an example of this, rather than use
the prefix ‘counter’. For purposes of this course in aiding your experience of the idea of proof
by contradiction or proof by ‘counter-example’, I will use the terminology ‘counter-example’
as I find it tends to be initially more clarifying when studying methods of proof, though I
accept the argument against the use of this term.
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Definition 2.29. We say that the sequence of random variables {Xn}∞n=1
converges with probability one (almost surely, almost everywhere) to the random
variable X if

P ({ω : lim
n−→∞

Xn(ω) 6= X(ω)}) = 0

We write this is Xn
a.s.−→ X.

Definition 2.30. We say that the sequence of random variables {Xn}∞n=1
converges in mean square to the random variable X if

lim
n−→∞

E[(Xn −X)2] = 0

We write this as Xn
2−→ X.

Definition 2.31. Let Sn = 1
n

∑n
i=1Xi where Xi is a random variable whose

mean is µi. We call Sn the sample mean.

Note that

E(Sn) = E

(
1
n

n∑
i=1

Xi

)
= 1
n

n∑
i=1

µi ≡ µ̄n

Informally, the Weak Law of Large Numbers (WLLN) states that given
certain conditions, the sample mean converges in probability to the population
mean as the sample size goes to infinity. The next few definitions and results
are very useful tools in analysis of identification.

Proposition 2.32 (Markov’s Inequality). Let X be a random variable. Then,
for any α > 0 and k ∈ N

P (|X| ≥ α) ≤ 1
αk
E(|X|k)

Proof.

E(|X|k) =
∫ ∞
−∞

zkf|X|(z)dz

≥
∫ ∞
α

zkf|X|(z)dz

≥ αk
∫ ∞
−∞

f|X|(z)dz

= αkP (|X| ≥ α)

A simple version of the Markov Inequality is the following: if g is a contin-
uous and nonnegative function and d > 0 is a constant, then

P (g(x) ≥ d) ≤ E[g(x)]
d
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Proof. Observer that d1[g(X) ≥ d] ≤ g(X). Taking expectations and rearrang-
ing yields the Markov Inequality since the expectation of an indicator function
is a probability, i.e.

E[1[g(X) ≥ d]] = P (g(X) ≥ d)

Sometimes Markov Inequality refers to the case where g(X) = |X|.

Corollary 2.33 (Chebyshev’s Inequality). Let X be a random variable. Then,
for any α > 0

P (|X − E(X)| ≥ α) ≤ 1
α2V (X)

So, when g(X) = |X − µ|2 where µ = E(X), we get that:

P (|X − µ|2 ≥ ε2) ≤ ε2) ≤ E(|X − µ|2)
ε2

⇐⇒ P (|X − µ| ≥ ε) ≤ V ar(X)
ε2

which is Chebyshev’s Inequality.
Chebyshev’s Inequality can thus be seen to be a special case of Markov’s In-

equality where g(x) = |X−µ|2 and d = ε2. The one-sided Chebyshev Inequality
is:

P (X − µ > kσ) ≤ 1
1 + k2

Other (useful) versions include:

P (|X − µ| ≥ dσ) ≤ 1
d2

P (|X − c| ≥ d) ≤ E[(X − c)2]
d2

where σ2 = V ar(X), d > 0 and c ∈ R.

Proposition 2.34 (WLLN). Let {Xi}ni=1 be a sequence of uncorrelated random
variables, each having finite mean µi and variance σ2

i . Assume further that
σ2
i ≤M <∞ ∀i. Then Sn

p−→ µ̄n.

Proof. From Chebyshev’s Inequality for any ε > 0:

P (|Sn − µ̄n| ≥ ε) ≤
1
ε2
V (Sn)
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Using the bilinearity of covariances

V (Sn) = cov(Sn, Sn)

= cov

(
1
n

n∑
i=1

Xi,
1
n

n∑
i=1

Xi

)

= 1
n2

n∑
i=1

cov(Xi, Xi) + 1
n2

∑
i6=j

cov(Xi, Xj)

=≤ M

n

∴ P (|Sn − µ̄n| < ε) ≥ 1− M

nε2

=⇒ lim
n−→∞

P (|Sn − µ| < ε) = 1

Remark 2.35. Note that we only require the random variables to be uncor-
related, not necessarily iid. There are many versions of the LLN (even the
WLLN) under various sets of assumptions – this is important to know.

Proposition 2.36 (Strong Law of Large Numbers). Let {Xi}ni=1 be a sequence
of iid random variables with finite mean µ. Then Sn

a.s.−→ µ.

Proof. Omitted.

Let us compare the WLLN with the Strong Law of Large Numbers (SLLN).
WLLN (SLLN) assumes that the sequence of random variables is uncorrelated
(iid) and that µi <∞∧ σ2

i <∞ ∀i (says nothing about the variance, just µ <
∞), so SLLN has more strict assumptions. WLLN (SLLN) predicts that Sn

p−→
µ̄n, i.e. ‘p’ and ‘E(Sn) <∞’ (Sn

a.s.−→ µ, i.e. ‘a.s.’ and µi = µ ∀i <∞), so SLLN
is a stronger result. As mentioned in remark 2.35, there are lots of versions of
the LLN under different assumptions (relevant for specific cases say when we
can assume independence or dependence, etc.) and time spent exploring these
can be very beneficial for those of you interested in asymptotic theory directly
or indirectly; the same holds true for the Central Limit Theorems we will talk
about soon. First, we will describe the continuous mapping theorem (CMT),
which is a very useful result to show consistency of estimators.

Theorem 2.37 (CMT). Let Xn be a k-dimensional random vector with the
property that Xn

p−→ c where c is a constant and let f : Rk −→ Rm be contin-
uous at c. Then f(Xn) p−→ f(c).

Proof. Omitted.

Corollary 2.38. Let Xn
p−→ x and Yn

p−→ y. Then

• dim(Xn) = dim(Yn) =⇒ Xn + Yn
p−→ x+ y ∧Xn − Yn

p−→ x− y

• dim(Yn) = 1 =⇒ XnYn
p−→ xy
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• (dim(Yn) = 1 ∧ y 6= 0) =⇒ Xn
Yn

p−→ x
y

While WLLN shows that under certain assumptions the sample means con-
verges in probability to the (common) expectation µ, it turns out that the rate
at which this occurs is

√
n, i.e.

√
n(Sn − µ) converges to a non-degenerate

distribution, which can be characterised by the Central Limit Theorem (CLT).

Theorem 2.39 (Lindberg-Levy CLT). Let {Xi}ni=1 be iid with mean µ and
variance σ2 <∞. Then

√
n

[
Sn − µ
σ

]
d−→ N(0, 1)

Proof. Omitted.

CLTs are generally more difficult to show than LLNs. Intuitively, this is
because we have to show that a whole distribution converges. Slutsky’s theorem
is very useful to show the limiting distribution of estimators.

Theorem 2.40 (Slutsky’s Theorem). Let Xn and Yn be two sequences of uni-
variate random variables. If Xn

d−→ X and Yn
p−→ c, where c is a constant,

then

Xn + Yn
d−→ X + c

XnYn
d−→ Xc

Proof. Omitted.

2.2.1 Delta Method

We will finish this section by looking at the delta method. A full treatment
of the delta method, like the LLN and CLT above would require a lengthier
course and one that is concerned more with the theoretical side of economet-
rics. For now, we will present what I hope is an adequate introduction to the
delta method in order to provide a basic understanding of how it works. For
those interested in seeing the univariate, multivariate and general multivariate
method with examples, please consult Amemiya (1985) [2]. Let us start by
supposing that

√
n(Xn − µ) d−→ N(0, σ2)

where Xn is a scalar. We would like to know what
√
n(g(Xn)−g(µ)) converges

to in distribution. Let us assume that g is at least once continuously differen-
tiable, where g′(µ) 6= 0. Now take a first order Taylor series approximation of
g around µ:

g(Xn) = g(µ) + g′(X̄n)(Xn − µ)
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where µ ≤ X̄n ≤ Xn. This is called the Lagrange form of the remainder in the
Taylor series approximation. We can write:

√
n(g(Xn)− g(µ)) =

√
n(g(µ) + g′(X̄n)(Xn − µ)− g(µ))

=
√
n(g′(X̄n)(Xn − µ))

Observe √
n(Xn − µ) d−→ N(0, σ2) =⇒ Xn

p−→ µ

This is can be seen by letting µ = 0 without loss of generality. Then be-
cause Zn =

√
nXn is asymptotically Normal, it is bounded in probability for

sufficiently large n.

∴ ∀ε > 0,∃Mε <∞ : P (|Xn| >
Mε√
n

) < ε

Pick an arbitrary δ. Then we have that P (|Xn| > δ) = P (|Zn| >
√
nδ). Choose

n sufficiently large so that
√
nδ > Mε. Then we have that P (|Xn| > δ) < ε. As

our choice of ε was arbitrary, we have that P (|Xn| > δ) −→ 0, i.e. boundedness
in probability of Zn implies that Xn = Zn√

n
converges in probability to zero;

hence, Xn

p
µ. Furthermore, because X̄n lies between µ and Xn, we have that

X̄n

p
µ. Thus, sine we assumed that g′ is continuous, g′(X̄n) p−→ g′(µ). It

follows by Slutsky’s theorem that
√
n(g′(X̄n)(Xn−µ)) = g′(X̄n)

√
n(Xn−µ) d−→ g′(µ)N(0, σ2) = N(0, g′(µ)2σ2)

∴
√
n(g(Xn)− g(µ)) d−→ N(0, g′(µ)2σ2)

For this to be a non-degenerate distribution, g′(µ) 6= 0.

2.3 Properties of Estimators

Definition 2.41. An estimator is simply a function of the sample (X1, . . . , Xn).

The aim of an estimator is usually to approximate some underlying parame-
ter that characterises a distribution of interest. One example is the population
mean E(X) for which we might choose to use the sample average Sn as an
estimator. As it is a function of random variables, an estimator is a random
variable.

Definition 2.42. An estimate is the particular value that an estimator takes
for a particular realisation of the sample (x1, . . . , xn).

An estimate is a number rather than a random variable. For the same ex-
ample of the mean, the value sn = 1

n

∑n
i=1 xi is an estimate for the population

mean. We are usually interested in constructing estimators to satisfy certain
desirable properties; for instance we are interested in having resulting estimates
that are ‘centered’ at the truth and are as ‘precise’ as possible.

41



c©Michael Curran

Definition 2.43. Let θ̂ be an estimate of the parameter θ. We define the bias
of θ̂ by

Biasθ(θ̂) = E(θ̂)− θ

Definition 2.44. An unbiased estimator θ̂ of the parameter θ is such that
Biasθ(θ̂) = 0.

Remark 2.45. Since unbiasedness does not refer to any sample size, i.e. it
should hold for any sample size, we call it a small sample property.

Example 2.46. Let the sample X1, . . . , Xn be such that E(Xi) = µ ∀i =
1, . . . , n. It turns out that the sample mean Sn is an unbiased estimator of the
population mean:

E(Sn) = E

(
n∑
i=1

Xi

n

)
= 1
n

n∑
i=1

E(Xi) = µ

while the sample variance 1
n

∑n
i=1 (Xi − Sn)2 is biased.

Definition 2.47. We say that the estimator θ̂ is (weakly) consistent for θ when
θ̂

p−→ θ.

Remark 2.48. Since consistency refers to the behaviour of the estimator as
the sample tends towards infinity, we call it a large sample property.

Example 2.49. Let the sample X1, . . . , Xn be such that E(Xi) = µ ∀i =
1, . . . , n. The sample mean Sn is (weakly) consistent for the population mean
by the WLLN, i.e. Sn

p−→ µ.

Definition 2.50 (MSE). The mean square error (MSE) is a natural measure
of the distance between an estimator and the parameter and is defined by

MSEθ(θ̂) = E
[
(θ̂ − θ)2

]
or equivalently

MSEθ(θ̂) =
[
Biasθ(θ̂)

]2
+ V (θ̂)

MSE motivates the following definition of relative efficiency between two
estimators, which is a finite sample property.

Definition 2.51 (Relative Efficiency). Let θ̂1, θ̂2 denote two estimators of a
parameter θ ∈ Θ, the parameter space. We say that θ̂1 is more efficient relative
to θ̂2 if it has lower or equal MSE for every value of θ in the parameter space:

MSEθ(θ̂1) ≤MSEθ(θ̂2) ∀θ ∈ Θ smallest MSE[
Biasθ(θ̂1)

]2
+ V (θ̂1) ≤

[
Biasθ(θ̂2)

]2
+ V (θ̂2) ∀θ ∈ Θ . . . equivalently
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At a first glance, relative efficiency may seem like a natural concept with
which to select best estimators. However, its dependence on the value of the
underlying parameter renders the task of finding an estimator that is relatively
more efficient than any other estimator infeasible.

Example 2.52. Consider the task of estimating the parameter θ = E(θ) and
let the estimator be θ̂ = 5. A constant function of the sample, it may seem a
strange estimator. Observe MSEθ(θ̂) = (5− θ)2. So, when θ = 5 the constant
estimator θ̂ = 5 is the best estimator along the lines of the MSE criterion.

Example 2.52 serves to illustrate the point that it is impossible to minimise
the MSE over all θ ∈ Θ. Let us restrict the class of estimators we consider.
In small samples, we restrict attention to the class of unbiased estimators and
this leads to the following definition.

Definition 2.53 (Efficiency). We say that an estimator θ̂n of θ is efficient if
it has the smallest variance among all unbiased estimators of θ:

1. E(θ̂n − θ) = 0 ∀θ (unbiased)

2. V (θ̂n) ≤ V (θ̂n
′
∀θ̂n
′
s.t. E(θ̂n

′
− θ) = 0 ∀θ (minimum variance)

Mostly, we do not have exact finite sample results in econometrics, so we
focus on large sample results instead.

Definition 2.54 (Asymptotic Efficiency). An estimator θ̂n is the best asymp-
totically Normal (BAN) or asymptotically efficient estimator ⇐⇒

1.
√
n(θ̂n − θ)

d−→ N(0, σ̂2) ∀θ ∈ Θ (analog to unbiasedness)

2. σ̂2 ≤ σ̃2 ∀θ̃n s.t.
√
n(θ̃n − θ) −→ N(0, σ̃2) ∀θ ∈ Θ (analog to minimum

variance)

To know when an estimator is efficient or asymptotically efficient, or whether
we are close to efficiency or asymptotic efficiency, we can use the Cramer-Rao
(CR) lower bound. This bound imposes a lower bound on the variance for any
unbiased estimator under certain regularity conditions. See your notes from
the first term on the Cramer-Rao lower bound. Remember that these first
two chapters will be useful reference material for the course, which starts in
chapter 3.
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Chapter 3

Identification

3.1 Problem of Identification

This chapter is based on Manski (2007)[59]. To motivate this topic, let us
consider a number of examples.

Example 3.1 (Death Penalty). 1 Looking at a classic two-player game between
criminals and society where r1 denotes how much crime a criminal chooses to
commit and r2 is how touch society can be in terms of sanctions (i.e. toughness
against crimes). For each covariate xj , let Rj1(·) be the reaction of criminals
to society and Rj2(·) be the reaction of society to criminals. So rj1 = Rj1(rj2)
and rj2 = Rj2(rj1) are the reactions of criminals and society respectively, which
are functions of each other’s choices. These will be the equilibrium conditions
in a two player game where our objective is P [R1(·), R2(·)|X] and our data is
P (r1, r2|x). Questions include what the crime rate would be if the sanction
was r2 and how tough would society need to be as a function of the crime rate.
What is of key interest is the deterrent effect of penalties on the crime rate. This
is a very hard identification problem since we can only observe the crime rate
under a given sanction policy but not under different sanction policies. Then at
Chicago University but now at the University at Buffalo, Isaace Ehrlich wrote
a highly controversial 1975 AER paper of a 2 person game using a linear model
with linear homogeneous reaction functions (R(r) = βr + ε). The crime of
interest was murder and the sanction of interest was execution. So, the focus
was on the deterrency of the death penalty and Ehrlich estimated β, finding
that one execution deters eight murders. Had Ehrlich provided econometric
evidence that the death penalty was a good idea? The National Research
Council (NRC) investigated this study and after extensive work reached the
conclusion that the identification problem was so severe that it could not be
believed. The NRC was recently asked the same question on whether empirical
studies have provided scientifically valid evidence to determine if murder rates

1Isaac Erhlich’s 1975 AER paper ‘The Deterrent Effect of Capital Punishment: A Ques-
tion of Life or Death’.
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are affected by the death penalty. They reached the same conclusion.2 Clearly,
identification has huge importance in the realm of policy.

Example 3.2. Let T denote the set of treatments in policy analysis or compar-
ative statics. We will associate the term ambiguity with Knightian uncertainty,
i.e. where we can not even quantify the distribution of outcomes. Let t ∈ T de-
note a particular treatment and assume that treatments are mutually exclusive
and exhaustive; for example with cancer, assume that there are only two treat-
ments that are surgery and chemotherapy and so the treatment set is either,
both or neither; hence, the set of treatments consists of four mutually exclusive
elements that are exhaustive. First note that we should distinguish P (y(t)|x)
and P (y|x, z = t): the first is the hypothetical probability if all people receive
treatment t, which is unobserved (e.g. demand function) whereas the second
is the realised treatments (observed, e.g. quantity demanded). The essence
of the simultaneity problem is that we do not observe demand functions, only
the equilibrium price, so we are using a counterfactual (defined shortly) and
with heterogeneity, other markets have different market equilibria. So, if we
extrapolate (defined shortly), we get counterfactual situations. For example,
with macro policy with respect to government and central bank stimuli after
the financial crisis, some say this was necessary to prevent a greater depression.
However, we cannot refute someone saying that these stimuli did not matter.
To ease subsequent conversations about this, I will refer to the Krugman view
that the stimulus was not big enough versus (in America) the Republican at-
titude that the stimulus does not matter. Equivalently, we cannot refute the
hypothesis that response y(t) is an increasing function of t, i.e. that increasing
the stimulus would have helped. For example, with the fiscal multiplier, say the
impact of government spending on macro policy, postulating a high multiplier
would imply a more liberal attitude and a small one would reflect a more con-
servative outlook. These are all examples of non-refutable hypothesis (defined
shortly). From data alone, it is impossible to work out the best treatment. If
Tr(A) > Tr(B) where Tr(A) is the outcome under treatment A, typically an
assumption has been made somewhere. Some papers are clear and some other
papers are less clear about what assumptions are made, however. The study of
identification will allow you to understand and work through all of these issues
and more. With that in mind, let us start our formal study of identification.

Consider the model

y = x′β + ε

E(ε|x) = 0

where x is k × 1, alternatively defined by

E[y|x] = x′β

2A world leader in the field of identification, Northwestern’s Charles Manski was a mem-
ber of the committee working on the 1978 report then at Carnegie-Mellon and on the 2012
report.
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Suppose we have data (yi, xi)Ni=1 where N is extremely large and an indepen-
dently and identically distributed (iid) sample. Here with identification, we
always work under the assumption that you can observe the population (i.e.
N =∞) so E(y|x) = x′β is ‘known’. Our question relates to the identification
of β in the model above with given data; what can we learn about β?Model

+
Data


Identification

Analysis=⇒ Information about β

Definition 3.3. A parameter b ∈ Rk is identified relative to β if PX{x : x′b 6=
x′β} > 0.

Definition 3.4. In the model above, β is point identified if ∀b 6= β, b is
identified relative to β.

Let us look for a sufficient condition for point identification of β.

Lemma 3.5. If the matrix Exx′ has rank k, then β is point identified.

Proof. Let b 6= β.

E{(x′(b− β))2} = (b− β)′Exx′(b− β) ≥ 0
= 0 only if b = β

=⇒ x′(b− β) 6= 0 on a set of positive measure
=⇒ x′b 6= x′β on a set of positive measure

Remark 3.6. A point identified model does not imply that the objective func-
tion to estimate β has a unique minimum. However, if the objective function
has a unique minimum, then the model is point identified.

Alternative definitions of a parameter being identified include the following.

Definition 3.7. The parameter vector θ0 is identified if for any other param-
eter vector θ ∈ Θ, the set

{y|f(y|θ) 6= f(y|θ0)}

has positive probability.

Definition 3.8. Let Θ be a parameter space and consider a family of para-
metric probability measures {P (·; θ) : θ ∈ Θ} that are absolutely continuous
w.r.t. a σ-finite measure ν (such as Lebesgue or counting). The parameter θ
is identified if for θ1 6= θ2, we have that P (·; θ1) 6= P (·; θ2).

Suppose that we have a set of parameters Θ and a family of probability dis-
tributions P (x; θ). A necessary condition for parameter θ∗ ∈ Θ to be identified
is that, for any θ ∈ Θ, θ 6= θ∗, P (·; θ∗) 6= P (·; θ). Sufficient if P (x; θ) absolutely
continuous w.r.t. σ-finite measure ν.
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Example 3.9. Suppose that we observe (x, y) where

y =
{

0 αx+ ε < γ

1 αx+ ε ≥ γ

where x ⊥⊥ ε, ε ∼ N(µ, σ2) and x has some known distribution, which doesn’t
depend on any of α, γ, µ, σ2.

(a) We claim first that θ = (α, γ, µ, σ2) is not identified:

Proof. We have to check whether, for any θ, there exists θ′ 6= θ s.t. ∀x,
P (y = 0|x; θ) = P (y = 0|x; θ′).
Note that we can restrict ourselves only to conditional distributions in-
stead of the multivariate ones, since we know the distribution of x.
Then P (y = 0|x; θ) = P (αx + ε < γ|x) = P ( ε−µσ < γ−αx−µ

σ |x) =
Φ(γ−αx−µσ ) where Φ is the cumulative normal distribution function.
To see that θ is not identified, take θ′ = (kα, kγ, kµ, k2γ2), for some
k > 0. Then we have P (y = 0|x; θ) = P (y = 0|x; θ′).

(b) Thus, first normalize σ2 = 1. Then the parameters (α, γ, µ) are still not
identified (although α alone is identified):

Proof. Take θ′ = (α, γ+A,µ+A) and we see that Φ(γ+A−αx−µ−A) =
Φ(γ − αx− µ).

(c) If we normalise again γ = 0, then (α, µ) are finally identified:

Proof. Suppose that ∀x,Φ(−(αx+µ)) = Φ(−(α′x+µ′)). Since Φ is 1-1,
it follows that, ∀x, αx+µ = α′x+µ′ =⇒ (α−α′)x = µ′−µ. This implies
that α = α′ and µ′ = µ.

Identification example: your own movements and your movements in a mir-
ror – which drives which or do both move due to an external stimulus? This
reflection problem (Manski, 1993) [58] arises if you try to interpret the com-
mon observation that individuals belonging to the same group tend to behave
similarly. Three hypotheses have been proposed to explain this phenomenon:

1. endogenous effects: ‘propensity of an individual to behave in some way
varies with the prevalence of the behaviour in the group’.

2. contextual effects: ‘propensity of an individual to behave in some way
varies with the distribution of background characteristics in the group’.

3. correlated effects: ‘individuals in the same group tend to behave simi-
larly because they face similar environments or have similar individual
characteristics’.
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Why would we care about what generates observed patterns of group be-
haviour? One reason is that different processes have different ramifications
for public policy. Data alone cannot reveal which hypothesis might be cor-
rect, so to draw conclusions we need to combine empirical evidence (data) with
assumptions. This is an identification problem.

Definition 3.10. The Law of Diminishing Credibility: the credibility of in-
ference decreases with the strength of the assumptions made. (Manski, 2007:
3) [59]

Manski (2007) [59] distinguishes identification and statistical inference as
follows:

‘Studies of identification seek to characterize the conclusions that
could be drawn if one could use the sampling process to obtain an
unlimited number of observations. Studies of statistical inference
seek to characterize the generally weaker conclusions that can be
drawn from a finite number of observations.’ (Manski, 2007: 3) [59]

Logically, identification precedes inference much like the study of probability
precedes that of statistics. Koopmans (1949: 132) [55] introduced the term
‘identification’ into econometric literature as follows.

‘In our discussion we have used the phrase “a parameter that
can be determined from a sufficient number of observations.” We
shall now define this concept more sharply, and give it the name
identifiability of a parameter. Instead of reasoning, as before, from
“a sufficiently large number of observations” we shall base our dis-
cussion on a hypothetical knowledge of the probability distribution
of the observations, as defined more fully below. It is clear that
exact knowledge of this probability distribution cannot be derived
from any finite number of observations. Such knowledge is the limit
approachable but not attainable by extended observation. By hy-
pothesizing nevertheless the full availability of such knowledge, we
obtain a clear separation between problems of statistical inference
arising from the variability of finite samples, and problems of iden-
tification in which we explore the limits to which inference even
from an infinite number of observations is suspect.’

Data and assumptions lead to conclusions. To paraphrase Manski, we can
only overcome identification problems by making stronger assumptions or by
initiating new sampling processes that yield different kinds of data rather than
gathering more of the same kind of data.

Definition 3.11. t is in the support of P if

P [t− δ ≤ y ≤ t+ δ] > 0 ∀δ > 0

An equivalent definition is the following.

49



c©Michael Curran

0 1 2 3 4 5 6 7

x

y

Figure 3.1: Confidence interval for E(y|x) when n = 100.
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Figure 3.2: Confidence interval for E(y|x) when n = 1000.

Definition 3.12. A covariate value x0 is on the support of the distribution
P (x) if there is positive probability of observing x arbitrarily close to x0. A
covariate value x0 is off the support of P (x) if there is zero probability of
observing x within some neighbourhood of x0.

Let us now consider the problem of extrapolation – i.e. prediction off the
support, in particular the problem of predicting a random variable y conditional
on x where x only takes values at {0, 1, 2, 3, 5, 6, 7}. We can compute a tighter
confidence interval for the mean of y|x with 1000 observations of (y, x) than we
can with 100 observations. Figures 3.1 and 3.2 represent each case. The width
of the confidence intervals relates to a statistical problem, since we can estimate
E(y|x) more precisely with more data. However, at x = 4, the confidence
interval is infinite irrespective of sample size, which means we are dealing with
an identification problem.

Extrapolation requires an assumption that restricts E(y|x) globally. In-
variance assumptions (e.g. P (y|x = x0) = P (y|x = x1) i.e. assume that y
behaves in the same way at x0 as it does at some specified x1 on the support
of P (x) like in RAND study – see example 3.19). Invariance assumptions are
special cases of general idea of shape restrictions, e.g. linearity, monotonicity.
A related concept to extrapolation is generalisability or external validity.
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Definition 3.13. An experiment is said to have external validity if the dis-
tribution of outcomes realized by a treatment group is the same as the dis-
tribution of outcomes that would be realized in an actual program. (Manski,
2007:27) [59]

The first function of theory is to allow extrapolation, while the second
function is to improve the sampling precision for estimation on the support.
As you will be aware from your study of causality in the first term, sometimes
you may recognize that theory purports to explain why observed outcomes
occur. However, when making predictions, we are less interested in why things
happen and more interested in will associations hold. Unfortunately, theory
tends to be testable when least necessary, i.e. we can learn P (y|X) on the
support of P (x) and theory tends to be least testable when most needed, i.e.
for learning P (y|x) off the support of P (x). Essentially, failures off support are
inherently not detectable.

With regard to our study of identification in this chapter, we will concen-
trate on problems arising in prediction and decision. With prediction, our goal
is to learn the probability distribution of an outcome y conditional on a co-
variate x. With decision problems, we focus on cases where the relative merits
of alternative actions depend on the outcome distribution P (y|x) and ask how
a decision maker might choose an action when available data and credible as-
sumptions only partially identify this distribution. This chapter may challenge
your ideas about partial identification:

‘For most of the twentieth century, econometricians and statisti-
cians commonly thought of identification as a binary event – a pa-
rameter is either identified or not.’ (Manski, 2007: 11) [59]

Researchers need to be more comfortable with expressing uncertainty and
acknowledging ambiguity. Often we only can make partial conclusions: decision
makers usually only have part of the info they need to choose unambiguously
best actions. It is better to report ranges than point estimates and avoid
maintaining only one hypothesis rather than offering predictions under the
range of plausible hypotheses that are consistent with the available evidence.
We should try to discourage the Johnson syndrome: ‘Ranges are for cattle.
Give me a number.’

3.2 Conditional Prediction

The joint probability (frequency) distribution of (y, x ∈ Y ×X) across popula-
tion is P (y, x). A person is drawn at random from the subpopulation of people
with a specified value of x. The problem is to predict his value of y. P (y|x)
can be interpreted as:

1. the distribution of y conditional on x, viewed as a function of x;

2. the distribution of y conditional on x, evaluated at a specified value of x;
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3. the probability that y takes a given value conditional on x viewed as a
function of x;

4. the probability that y takes a given value conditional on x evaluated at
a specified value of x.

The particular interpretation will be clear from the context and sometimes I
may write P (y).

Whenever we can observe (y, x) at random from the population of interest,
we might ask how we can learn about the conditional distribution P (y|x) or at
least the value of a best predictor of y given x. Even if we assume nothing about
the form of the distribution P (y, x), random sampling will reveal P (y, x). For
studying conditional prediction, we will now look at empirical distributions and
illustrate use of some of the above concepts, in addition to the analogy principle,
which loosely implies using sample statistics for population counterparts and
then calling on results from asymptotic theory to justify these sample statistics.
The empirical distribution PN (y, x) is the sample analog and natural estimate
of P (y, x). It is a multinomial distribution placing equal mass 1

N on each of N
observations [(yi, xi) : i = 1, . . . , N ]; if a particular value of (y, x) recurs in the
data, it receives multiple 1

N weights. It is natural to use PN (y, x) to estimate
P (y, x) since the empirical distribution estimates the probability P [(y, x) ∈ A]
that E(y, x) falls in some set A by estimating the fraction of observations of
(y, x) that fall in the set A:

PN [(y, x) ∈ A] = 1
N

N∑
i=1

1[(yi, xi) ∈ A] as−→ P [(y, x) ∈ A]

where the convergence follows by the SLLN; more specifically, it can be shown
that (ICBST) the empirical distribution for this probability converges almost
surely to E[1[(y, x) ∈ A]], which turns out to be P [(y, x) ∈ A]; the proof of the
second part of this statement is as follows:

Proof.

E[1[(y, x) ∈ A]] = 1.P [(y, x) ∈ A] + 0.P [(y, x) /∈ A]
= P [(y, x) ∈ A]

This essentially means that we can interpret probability as the expectation
of an indicator function. Since with random sampling, we can learn P [(y, x) ∈
A] even if we knew nothing before about it’s value and this holds for every
set A, we can learn the distribution P (y, x). Let us now look at the three
cases. The lesson from this section will be that we can only do non-parametric
estimation on the support.

1. x0 is on the support of P (x) and P (x = x0) > 0.

2. P (x = x0) = 0 but x0 is on the support.
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3. x0 is off the support of P (x).

In the first case where covariates have positive probability, i.e. when P (x =
x0) > 0, we have that the conditional empirical probability is given by:

PN (y ∈ B|x = x0) =
∑N
i=1 1[yi ∈ B, xi = x0]∑N

i=1 1[xi = x0]

=
1
N

∑N
i=1 1[yi ∈ B, xi = x0]

1
N

∑N
i=1 1[xi = x0]

(3.1)

Observe that the numerator converges almost surely to P (y ∈ B, x = x0) by
SLLN and the denominator converges almost surely to P (x = x0), which is
positive in this case. So, by the Contraction Mapping Theorem and Bayes
Theorem, the RHS of (3.1) converges almost surely to P (y ∈ B|x = x0):

P (y ∈ B, x = x0)
P (x = x0)

Bayes= P (y ∈ B|x = x0)

which holds for every set B so we can learn about the conditional distribution
P (y|x = x0). So, (sample) empirical quantiles (e.g. mean and median) con-
verge to population quantiles. Also remember that for the SLLN and CMT,
we need functions to be continuous.

Example 3.14.

EN (y|x = x0) =
∑N
i=1 yi · 1[xi = x0]∑N
i=1 1[xi = x0]

=
1
N

∑N
i=1 yi · 1[xi = x0]

1
N

∑N
i=1 1[xi = x0]

(3.2)

The numerator of the RHS in (3.2) converges almost surely to E(y · 1[x =
x0]) as N increases by SLLN, which equals E(y|x = x0)P (x = x0) and the
denominator converges to P (x = x0). Given that P (x = x0) > 0, by the CMT:

EN (y|x = x0) a.s.−→ E(y|x = x0)

Similarly, MN
a.s.−→M .

In the second case where covariates have zero probability, i.e. when P (x =
x0) = 0 but x0 on the support of P (x) (e.g. continuous distributions). Let
ρ(xi, x0) measure distance between covariate of interest x0 and an observed
value xi. When x is scalar, ρ(xi, x0) = |xi − x0|. When x vector, it could be
any reasonable measure of distance between xi and x0, e.g. Euclidean distance
between these vectors. Let dN denote bandwidth. The subscript N on dN
indicates that bandwidth is a function of sample size. Estimate E(y|x = x0)
by the sample mean of y among the observations for which ρ(xi, x0) < dN .

Definition 3.15. The local average or uniform kernel estimate is:

θN (x0, dN ) ≡ EN (y|x = x0) =
∑N
i=1 yi · 1[ρ(xi, x0) < dN ]∑N
i=1 1[ρ(xi, x0) < dN ]
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where dN is a sample-size dependent bandwidth selected by the researcher con-
veying the idea of restricting attention to observations where xi is near x0;
sometimes dN is written as dN (x0) and called the local bandwidth selection to
emphasise the case where we do not use the same bandwidth everywhere.

A basic finding of modern nonparametric regression analysis is that the
uniform kernel estimate EN (y|x = x0) a.s.−→ E[y|x = x0] provided the following
four conditions hold:

1. E(y|x) varies continuously with x near x0.

2. V (y|x) bounded for x near x0.

3. Tighten bandwidth dN as sample size N increases.

4. Do not tighten bandwidth dN too rapidly as sample size N increases.

Conditions (i) and (ii) are minimum regularity conditions; we can always choose
bandwidths so (iii) and (iv) hold.

Remark 3.16 (Curse of Dimensionality). We should choose the bandwidth
dN so MSE tends to zero, i.e. variance and bias tend to zero. Large dN
is good for variance in that we get a big sample and so standard deviation
reduces at rate

√
n, but then the bias could be large, i.e. E(y|ρ(x, x0) < dN )−

EN (y|x = x0) could be large when dN is large. When dN is small, however,
variance increases because there are fewer observations in each cell. The curse
of dimensionality rears its head in that a larger dimension for x does not affect
bias but it does affect variance because there tends to be fewer observations
lying inside bandwidths of radius dN , so variance is still high. With non-
parametric estimation, the price to pay is generally that the rate of convergence
will be slower than

√
n. Stone (1981) showed that the best rate of convergence

you can achieve from non-parametric estimation gets tougher as the dimension
of x increases. So the curse of dimensionality takes the following form: the
best achievable rate of convergence diminishes as the dimension of covariates
increases. Of course, one solution would be to look at semi-parametric models
such as linear index models, e.g. the regression of E(y|x) = g(x) where we
only know that g is continuous; say x is in a three dimension space, then
g(x) = g(x1, x2, x3) = g′(β1x1 + β2x2 + β3x3) for a linear index model where
g 6= g′, i.e. linear index models wipe out the curse of dimensionality; note that
semi-parametric models make assumptions about the regression functions: g is
parametric while g′ is non-parametric.

In the third case, x0 is off the support of P (x), i.e.

∃d0 > 0 : P [ρ(xi, x0) < d0] = 0

e.g. when x0 = 5 in figure 3.1. One can only do non-parametric estimation on
the support. Now, data alone reveal nothing about P (y|x = x0). So, we are in
the case of extrapolation: predicting y when x0 is off the support, i.e. making
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predictions away from data. We need global assumptions for identifying power
in the case of extrapolation, i.e. we need to restrict E(·|·) globally. We can
invoke invariance assumptions, such that y behaves the same at x0 as at x1 on
the support of P (x), i.e.

P (y|x = x0) = P (y|x = x1)

Definition 3.17. Using a counterfactual entails expressing what has not hap-
pened but what might or would happen if circumstances, i.e. data were differ-
ent.

Example 3.18. What would the consequences be for the US had the Paulson
plan not been enacted? What would the consequences have been for Europe
had we not decided to bail out the banks? Surely we would be better off? What
about if Senator John McCain had been president instead of Barack Obama?
These are hypothetical situations. We can analyse these circumstances, e.g. in
DSGE models, but do not have data on them. This has much to do with the
inherent problem in economics that experiments are not as readily available as
in the natural sciences.

Example 3.19 (Predicting Criminality). Selective incapacitation implies that
sentencing of convicts should be linked with predictions regarding their future
criminality. The RAND study by Greenwood & Abrahamse (1982) found that
using a sample of 2200 prison and jail inmates in 1978 across California, Michi-
gan and Texas, those with backgrounds such as previous convictions, drug use
and unemployment predict high rates of future offenses and part of their re-
search team then suggested that those with such backgrounds should receive
longer prison terms. This was very controversial, especially when this predic-
tion approach became part of a legislative proposal for selective incapacitation.
The part of the controversy that relates to econometrics concerns the external
validity from the RAND results to other groups, places and sentencing policies.
The findings hold for this particular cohort of prisoners in these three states
for the given sentencing policies, but that does not imply that they would still
apply to other cohorts of prisoners in other states or to criminals who would
be sentenced under alternative policies such as selective incapacitation.

Remark 3.20. Sometimes, hopefully rarely, researchers misinterpret corre-
lation with causation. However, if treatments are randomly assigned, then
causation becomes more justifiable. For instance, if there were no selection
issues and people were truly randomly assigned to different treatments, then if
data showed that outcomes under one treatment were ‘better’ than outcomes
under another treatment, we could conclude that there is a causal link: the
first treatment improves the outcome relative to the second.

Failures off the support are inherently not detectable. Theory becomes im-
portant. The first function of theory is to allow extrapolation and the second
function function of theory is to improve the sampling precision for estimation
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on the support. Causal interpretation can be ‘dodgy’, while prediction is usu-
ally better. Unfortunately, cases where theory is most testable are generally
least needed – learning P (y|x) on the support of P (x), while cases where theory
is least testable are generally most needed – learning P (y|x) off the support of
P (x).

Returning to the local average estimate, a more general kernel estimator is
the following.

Definition 3.21. The local weighted average or kernel estimate is

EN (y|x = x0) =
1
N

∑N
i=1 yiK

[
ρ(xi,x0)
dN

]
1
N

∑N
i=1K

[
ρ(xi,x0)
dN

]
where 0 ≤ K(·) is inversely related to ρ(xi, x0)/dN . The uniform kernel can be
seen to be a special case where

1
[
ρ(xi, x0)
dN

< 1
]

and here all observations get used and are given the same weight, hence the
name ‘uniform’ kernel.

Remark 3.22. Choosing bandwidth dN can be extremely subjective. Best
practice is to report multiple estimates or use data dependent automated rules
to choose the bandwidth, e.g. cross-validation. Cross-validation involves fixing
the bandwidth, estimating the regression on each of the N possible subsamples
(each of size N −1 and then in each case we use the estimate to predict y|x for
the observation that was left out. The resulting bandwidth, the cross-validated
bandwidth yields the best predictions of the left-out values of y. Increasing the
bandwidth typically reduces variance but increases bias, which is not good for
the MSE – this is another manifestation of the curse of dimensionality as N
increases.

A (more) thorough approach to prediction often stresses the specification
of a loss function L(·) that we want to minimise. Letting p be predictor of
the random variable Y and X be other random variables, we usually want to
minimise the expected loss conditional on the random variates X:

minE[L(y − p)|x]

The best predictor solves this minimisation problem, so choosing a best pre-
dictor is a decision problem whose solution depends on the objective, i.e. the
best predictor is determined by L(.) and P (y|x). It can be shown that when
the loss function is a square loss function, the best predictor is the mean. In
this case, the solution may not exist, however. It can also be shown that with
absolute loss functions, the best predictor is the median. In what follows, let
u ≡ y − p.

56



c©Michael Curran

Lemma 3.23. Under square loss, the best predictor is the mean.

Proof. Let L(·) be the square loss function, i.e. L(u) = u2, µ = E(y) and
µ 6= θ ∈ R. Then

E(y − θ)2 = E[(y − µ) + (µ− θ)]2

= E(y − µ)2 + (µ− θ)2 + 2(µ− θ)E(y − µ)
= E(y − µ)2 + (µ− θ)2 > E(y − µ)2

Therefore, µ uniquely minimises the expected loss.

Lemma 3.24. Under absolute loss, the best predictor is the median.

Proof. Let L(·) be the absolute loss function, i.e. L(u) = |u| and m ≡ min{θ :
P (y ≤ θ) ≥ 1

2} be the median of y where m ∈ R. Let us first compare the
expected loss at m with that at any θ < m:

E[|y − θ|]− E[|y −m|] = E[|y − θ| − |y −m|]
= (θ −m)P (y ≤ θ)
+ E[2y − (θ +m)|θ < y < m]P (θ < y < m)
+ (m− θ)P (y ≥ m)
≥ (θ −m)P (y ≤ θ) + (θ −m)P (θ < y < m)
+ (m− θ)P (y ≥ m)
= −(m− θ)P (y < m) + (m− θ)P (y ≥ m)
= (m− θ)[P (y ≥ m)− P (y < m)]

Since by definition P (y < m) ≤ 1
2 , the final expression is nonnegative. Finally,

let us compare the expected loss at m with that at any θ > m:

E[|y − θ|]− E[|y −m|] = E[|y − θ| − |y −m|]
= (θ −m)P (y ≤ m)
+ E[(θ +m)− 2y|m < y < θ]P (m < y < θ)
+ (m− θ)P (y ≥ θ)
≥ (θ −m)P (y ≤ m) + (m− θ)P (m < y < θ)
+ (m− θ)P (y ≥ θ)
= (θ −m)P (y ≤ m)− (θ −m)P (m < y)
= (θ −m)[P (y ≤ m)− P (m < y)]

Since by definition P (y ≤ m) ≥ 1
2 , the final expression is nonnegative.

One advantage of absolute loss functions is that the solution always ex-
ists; least absolute deviations (LAD) estimation is necessary for absolute loss
functions and its asymptotic theory is complicated due to non-differentiability.
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It turns out that best predictors associated with convex, symmetric loss func-
tions coincide; the mean is the median when P (y|x) is symmetric; furthermore,
P (y|x) = P (y|h(x)) when h is injective. L(u) = u2 and L(u) = |u| treat under-
and overpredictions of loss symmetrically. However, we don’t simply have to
look at symmetric loss functions such as L(u) = |u|.

Definition 3.25. The asymmetric α-absolute loss function is defined as

L(u) =
{

(1− α)|u| if u ≤ 0
α|u| if u ≥ 0

An equivalent way of writing this loss function is

L(u) = α|y − p|1[y − p > 0] + (1− α)|y − p|1[y − p < 0]

Example 3.26 (GRE scores). Let y denote GRE scores and x be some covari-
ate. Say α = 0.96, i.e. the 96th percentile, so P (GRE score ≤ t|x) = .96; for
example, t = 790. Best predictor under this loss function is Qα(y|x) = inf{t :
P (y ≤ t|x) ≥ α}.

The asymmetric α-absolute loss function leads to quantile regression (Koencker
& Basset, 1979):

Qα(y|x) = inf {t : P (y ≤ t|x) ≥ α}

Definition 3.27. The asymmetric α-square loss function is defined as

L(u) = α(y − p)21[y − p > 0] + (1− α)(y − p)21[y − p < 0]

and leads to expectiles.

Example 3.28. See Manski (2007) [59] section 1.5 on predicting high school
graduation.

3.3 Incomplete Data

Let (y, z, x) be such that y is an outcome to be predicted, x are covariates and
define

z =
{

1 if y is observed
0 else

Draw N people at random from population. For each i = 1, . . . , N , the outcome
yi is observable if zi = 1 and missing if zi = 0. The objective is to use available
data to learn about P (y|x) at a specified value of x on Supp(P (x)). We can
use the LTP to express the missing data problem more clearly:

P (y|x) = P (y|x, z = 1)P (z = 1|x) + P (y|x, z = 0)︸ ︷︷ ︸
missing

P (z = 0|x)

58



c©Michael Curran

The missing P (y|x, z = 0), which is unknown implies that we are dealing with
an identification problem. Denote P (y|x, z = 0) = γ ∈ ΓY , the identification
region is:

H[P (y|x)] = [P (y|x, z = 1)P (z = 1|x) + γP (z = 0|x), γ ∈ ΓY ]

and note that
P (z = 0|x) < 1 =⇒ H[·] ( ΓY

where ΓY denotes the set of all probability distributions on the set Y . H
is a proper subset of ΓY , i.e. H ( ΓY when P (z = 0|x) < 1 and is the
single distribution P (y|x, z = 1) when P (z = 0|x) = 0. Therefore, P (y|x)
is partially identified when 0 < P (z = 0|x) < 1 and is point identified when
P (z = 0|x) = 0.

Empirical research often has an objective of inferring a parameter of the
outcome distribution, e.g. E(y|x). Let θ(·) be a function mapping probability
distributions on Y into R and consider the parameter θ[P (y|x)]. The identifi-
cation region for this parameter is the set of all values it may take when P (y|x)
varies over all of its feasible values, so H{θ[P (y|x)]} = {θ(η), η ∈ H[P (y|x)]}.

Now looking at the identification of event probabilities, we can once again
use the LTP to express the missing data problem more clearly:3

P (y ∈ B|x) LTP= P (y ∈ B|x, z = 1)P (z = 1|x) + P (y ∈ B|x, z = 0)︸ ︷︷ ︸
∈[0,1]

P (z = 0|x)

The worst case bound on P (y ∈ B|x):

P (y ∈ B|x, z = 1)P (z = 1|x) ≤ P (y ∈ B|x)
≤ P (y ∈ B|x, z = 1)P (z = 1|x) + P (z = 0|x)

(3.3)

Equivalently, letting LB and UB denote lower and upper bounds, respectively,
we have that

LB : P (y ∈ B|x, z = 1)P (z = 1|x)
UB : P (y ∈ B|x, z = 1)P (z = 1|x) + P (z = 0|x)

UB and LB are the largest and smallest feasible values of P (y ∈ B|x) and hence
are called sharp bounds:

H[P (y ∈ B|x)] = [P (y ∈ B|x, z = 1)P (z = 1|x), P (y ∈ B|x, z = 1)P (z = 1|x)+P (z = 0|x)]

Observe that the width of the identification interval is given by UB − LB =
P (z = 0|x); hence, data is informative unless y is always missing. Note that
the width of interval may vary with x but it does not vary with the set B.

3We will not have time to identify quantiles during this course. For those interested, see
Manski (2007:39-40)[59].
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Because we are looking at event probabilities, it does not matter whether y has
a bounded or an unbounded support: B = [−∞, t], P (y ∈ B) = P (y ≤ t|x).

P (y ≤ t|x, z = 1)P (z = 1|x) ≤ P (y ≤ t|x)
≤ P (y ≤ t|x, z = 1)P (z = 1|x) + P (z = 0|x)

Example 3.29 (Bounding Probability of Exiting Homelessness). Piliavin &
Sosin (1988) wanted to know the probability of homelessness six months after
already being homeless. Let y = 1 if the individual has a home six months
later and y = 0 denote the opposite; x are background attributes. The goal is
learn P (y = 1|x) and the missing data problem arises due to not being able
to locate part of the original sample six months later. Let x = sex. 106 men
were sampled originally and 64 of these men were found six months later, 21 of
which were no longer homeless. Therefore, the empirical probability estimate of
P (y = 1|male, z = 1) = 21

64 and that of P (z = 1|male) = 64
106 . So, the estimate

of the bound on P (y = 1|male) is [ 21
106 ,

63
106 ] ≈ [0.20, 0.59]. 31 women were

sampled originally and 14 of these women were found six months later, 3 of
which were no longer homeless. Therefore, the empirical probability estimate
of P (y = 1|female, z = 1) = 3

14 and that of P (z = 1|female) = 14
31 . So, the

estimate of the bound on P (y = 1|female) is [ 3
31 ,

20
31 ] ≈ [0.10, 0.65].

With small sample sizes, interpretation of these estimates should be cau-
tious. In fact, we may not actually have tighter bounds on men because we
have a smaller sample of women; this is an inferential problem. The attrition
rates (equivalently the bounds) for men and women are 0.39 and 0.55, respec-
tively. Importantly, the bounds are informative. Even though no assumptions
were placed on the attrition process, we can place meaningful bounds on at-
trition rates. We will ignore sampling variability while studying identification
but return to it for later chapters.

There has been a history of researchers focusing on point identification
rather than reporting bounds. The practice of reporting simple bounds did
not catch on. Even when they are wide, bounds are useful for two reasons: (i)
they establish a domain of consensus and (ii) they highlight the role of credible
assumptions leading to tighter findings.

More generally, letting g be a function, LIE yields

E[g(y)|x] LIE= E[g(y)|x, z = 1]P [z = 1|x] + E[g(y)|x, z = 0]P (z = 0|x)

Assume g is bounded and let

g0 = inf
y∈Supp(Y )

g(y)

g1 = sup
y∈Supp(Y )

g(y)

g(y) will be bounded as long as P (z = 0|x) > 0. If g1 = ∞ or g0 = −∞,
i.e. the case of unboundedness, then we need more assumptions for inference.
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The width of the interval will be (g1 − g0)P (z = 0|x) and

H[E[g(y)|x]] = [E(g(y)|x, z = 1)P (z = 1|x) + g0P (z = 0|Zx),
E(g(y)|x, z = 1)P (z = 1|x) + g1P (z = 0|x)] (3.4)

which is a proper subset of [g0, g1] when P (z = 0|x) < 1, so it is informative.
The severity of missing data is directly proportional to P (z = 0|x).

Example 3.30. As an application of (3.4), let B ⊂ Y and g(y) = 1[y ∈ B].
Then g0 = 0, g1 = 1, E[g(y)|x] = P (y ∈ B|x) and E[g(y)|x, z = 1] = P (y ∈
B|x, z = 1). So, (3.4) is an alternative version of the bound given by (3.3)
onP (y ∈ B|x).

Remark 3.31. When g(·) is unbounded from above or below, (3.4) still holds
but has different implications when P (z = 0|x) > 0. The lower bound on
E[g(y)|x] is −∞ if g0 = −∞ and ∞ if g1 = ∞. The identification region has
infinite width but is still informative if g(·) is bounded from at least one side.
As Manski put it, ‘the presence of missing data makes credible assumptions
a prerequisite for inference on the mean of an unbounded random variable.’
(2007: 44) [59]

An important concept you may come across in microeconomics and econo-
metrics is that of stochastic dominance. You may have learned about first order
and second order stochastic dominance.

Definition 3.32. Distribution Q stochastically dominates distribution Q′ if
Q(y ≤ t) ≤ Q′(y ≤ t) ∀t

So one distribution tends to yield larger outcomes than the other. Roughly
speaking, if P (y|x = x0) stochastically dominates P (y|x = x1), then

P (y ≤ t|x = x0) ≤ P (y ≤ t|x = x1) ∀t
< P (y ≤ t|x = x1) some t

When ΓR is the space of all distributions on the real line, a real val-
ued parameter D(·) : ΓR −→ R is said to respect stochastic dominance if
D(Q) ≥ D(Q′) whenever Q stochastically dominates Q′. Equivalently, param-
eters respecting stochastic dominance, sayD(y|x) whereD(y|x = x0) stochasti-
cally dominates D(y|x = x1) have the property that for all monotone increasing
functions f :

E[f(y)|x = x0] ≥ E[f(y)|x = x1]

In fact, every quantile will be ‘higher’. For example:

M(y|x = x0) > M(y|x = x1)

So, when Q stochastically dominates Q′, we have that D(Q) ≥ D(Q′) where
D is a quantile such as the mean of an increasing function of y. Examples
of parameters that respect stochastic dominance are quantiles and means of
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increasing functions of y; spread parameters e.g. variance / interquartile range
do not respect stochastic dominance. To get identification, we need to look at
what happens between the highest and lowest values. Let us investigate how to
estimate the bound on D(P (y)) via stochastic dominance. Let y0 and y1 be the
smallest and largest logically possible values for y. The minimum (maximum)
value of D(·) that respects stochastic dominance is obtained by presuming that
any missing value of y is equal to y0 (y1).

Let us now look at some distributional assumptions. We want to learn the
identifying power of all distributional assumptions so we can characterise the
entire spectrum of inferential possibilities. The first and most common though
generally implausible assumption is the missing at random or conditional sta-
tistical independence assumption.

Definition 3.33. The missing at random (MAR) or conditional statistical
independence assumption is:

P (y|x, z = 1) = P (y|x, z = 0) = P (y|x)
=⇒ E[y|x, z = 1] = E[y|x, z = 0] = E[y|x]

The missing at random assumption is an example of a non refutable as-
sumption – any assumption about P (y|x, z = 0) is not refutable.

Definition 3.34. ‘Any assumption that directly restricts the distribution P (y|x, z =
0) of missing data is nonrefutable.’ (Manski, 2007: 46; my emphasis) [59]

To see how refutable assumptions may be tested statistically, consider
the assumption E[g(y)|x] ∈ R1 ⊂ R. We can reject the this hypothesis if
HN{E[g(y)|x)]} is sufficiently far from R1.

MAR implies that the following identification region contains one element,
P (y|x, z = 1):

H0[P (y|x)] ≡ [P (y|x, z = 1)P (z = 1|x) + γP (z = 0|x), γ ∈ Γ0Y ]

Assumptions placed on P (y|x, z = 0) ∈ Γ0Y are not empirically testable (they
are nonrefutable though you may be able to argue why it is not plausible
for P (y|x, z = 0) to lie in ΓY ) versus P (y|x) ∈ ΓY is better since it can be
empirically tested. Interesting assumptions include those positing that P (y|x)
lies in a specific set of distributions, Γ1Y . Data alone imply that P (y|x) ⊂
H[P (y|x)]. Combining the data with the assumption P (y|x) ⊂ Γ1Y :

H1[P (y|x)] ≡ H[P (y|x)] ∩ Γ1Y

If ∩Γ1Y is zero, then P (y|x) cannot lie in Γ1Y and so we have made the wrong
assumption, but if ∩Γ1Y is nonzero, this does not imply that we accept but
rather that we do not reject. Data may be refuted or may ‘not be refuted’.
When we use the term ‘nonrefutable’, we ask whether there could be an ex-ante
probability that the intersection is the null set – if yes, then our assumption is
refutable, else it is nonrefutable. Refutability concerns logic and is a property of
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assumptions and data whereas and credibility is a property of assumptions and
the researcher, so there is an element of subjectivity involved with credibility.

With no assumption on P (y|x), P (y|x) ∈ H[P (y|x)]. Now assume that
P (y|x) ∈ ΓY . After making this assumption, P (y|x) ∈ H[P (y|x)] ∩ ΓY =
H1[P (y|x)]. If H1[P (y|x)] is a strict subset of H[P (y|x)], then the assumption
is said to have identifying power. If H1[P (y|x)] = 0, then the assumption is
refutable. If H1[P (y|x)] 6= 0, then the assumption is non refutable; however,
this does not mean that the assumption is true!

The sample analogue of ID regions are denoted HN , where the subscript N
emphasises the dependence on the sample size N . As for confidence sets, let C
is correspondence taking ψ to R. It is important to understand the correct way
to interpret confidence sets. An α-confidence set does not mean that θ ∈ C(ψ)
for a given set C(ψ) with α% confidence, but that α% of such sets will contain
the true θ. Generally, to construct a confidence set, we start with a consistent
estimate of θ, e.g. θN (ψ) and then construct an interval:

[θN (ψ)− δ0N (ψ), θN (ψ) + δ1N (ψ)]

where δ0N (ψ) > 0 and δ1N (ψ) > 0 are such that

P{ψ : θ ∈ [θN (ψ)− δ0N (ψ), θN (ψ) + δ1N (ψ)]} N−→∞−→ α

What about confidence sets for identification regions? Denote the identification
region for θ by H(θ). Then C(·) gives an α−confidence set for H(θ) provided
that P [ψ : H(θ) ⊂ C(ψ)] = α. Note that an α-confidence for H(θ) contains θ
with a probability at least as large as α, i.e. P [ψ : θ ∈ C(ψ)] ≥ P [ψ : H(θ) ⊂
C(ψ)].4

Example 3.35. A confidence interval for the identification region for E[g(y)|x]
where g(·) is a bounded function can be given by

C(ψ) =
[
EN [g(y)|x, z = 1]PN (z = 1|x)
+g0PN (z = 0|x)− δ0N (ψ),
EN [g(y)|x, z = 1]PN (z = 1|x)
+g1PN (z = 0|x) + δ1N (ψ)

]
Horowitz and Manski (2000) [48] demonstrate how to choose δ0N (ψ) and δ1N (ψ)
so that the coverage probability of H{E[g(y)|x]} converges to α as N increases,
while Imbens and Manski (2004) [49] show how to choose δ0N (ψ) and δ1N (ψ) so
that the coverage probability of E[g(y)|x] converges to α as N increases. Note
that in both cases, δ0N (ψ) and δ1N (ψ) both converge to zero as N gets larger.
So, the confidence set shrinks towards the identification region for E[g(y)|x]
asymptotically.

4Beyond the scope of the course, Manski (2007:60-1) [59] has a nice section on convergence
of sets to sets using the Hausdorff distance for those interested.
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Typically, each realization of y is observed either completely or not at all.
However, y may be observed to lie in proper but nonunitary subsets of the
outcome space Y . Sampling with missing outcomes is a special case of interval
measurement. A common source of interval data is measurement devices with
bounded ranges of sensitivity.

Up to now, we know the mixture of the distributions, i.e. P (z = 1|x)
and P (z = 0|x) are known. What about when we have an unknown mixture
of a known P (y = 1|x, z = 1) and an unknown P (y = 1|x, z = 0)? The
joint missingness of (y, x) exacerbates the identification problem produced by
missingness of y alone.

Example 3.36 (Bounding the probability of employment and unemployment
rate). See Manski (2007:58-60) [59].

Let us now examine instrumental variables (IV) and describe different distri-
butional assumptions. Expand the distribution of interest (y, z, x) to (y, z, x, v)
where v ∈ V is an observable covariate that may be totally different to (x, z),
that may partially overlap with (x, z) or that may be identical to (x, z). The
term ‘instrumental variable’ due to Reiersol (1945) who used it to help identify
linear simultaneous equation systems can be defined as follows.5

Definition 3.37. v is an instrumental variable ‘if one poses an assumption
that somehow connects the conditional distributions P (y|v) across different
values of v.’ (Manski, 2007: 63) [59]

v is only useful when we combine observations of v with an assumption
that has identifying power. Manski (2007) [59] argues that the discussion of
whether a covariate is a ‘valid instrument’ is imprecise since it neglects to
discuss the assumption that accompanies v. He argues that a more precise
question would involve querying whether an assumption using an instrumental
variable is credible or not.

Let P (y, z, α, w) be such that y denotes outcomes, z denotes whether yi is
observed and α and w are covariates.

The missing at random assumption described above

P (y|x, z = 0) = P (y|x, z = 1)

is an example of a type one assumption and uses IV w = z. Sometimes, re-
searchers are uncomfortable about assuming MAR, which uses an instrumental
variable (v = z), so they sometimes make an alternative assumption, viz.:

P (y|x,w, z = 0) = P (y|x,w, z = 1) (3.5)

Lemma 3.38. Assumption (3.5) is nonrefutable and point identifies P (y|x).

5Goldberger (1972) claims that this use of instrumental variables dates back at least as
far as Wright (1928).
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Proof. Assumption (3.5) is nonrefutable precisely because it restricts the dis-
tribution of missing data P (y|x,w, z = 0). To see that it is point-identifying,
observe that:

P (y|x) LTP=
∑
k∈W

P (y|x,w = k)P (w = k|x)

further observe that assumption (3.5) implies P (y|x,w = k) = P (y|x,w =
k, z = 1) ∀k ∈W .

∴ P (y|x) =
∑
k∈W

P (y|x,w = k, z = 1)P (w = k|x)

The RHS of this equation is revealed (asymptotically) by the sampling process.
Therefore, P (y|x) is point-identified.

Remark 3.39. Note that assumption (3.5) is often written alternatively as

P (z = 1|x,w, y) = P (z = 1|x,w) (3.6)

Bayes Theorem shows that this is equivalent to assumption (3.5). While proved
analogously for the case where y is continuous with the density for y in place
of the probability masses, we can see for y discrete by applying Bayes Theorem
to the LHS of (3.6) that

P (y = j|x,w, z = 1)P (z = 1|x,w)
P (y = j|x,w) = P (z = 1|x,w)

for each j ∈ Y and solving this equation produces P (y = j|x,w, z = 1) =
P (y = j|x,w), which is the same as (3.5).

There is no justification for why some researchers believe that MAR condi-
tional on (x,w) is more credible than MAR conditional solely on x – ‘controls
for’ is too vague and lacks theoretical justification in formal probability theory.
Sometimes it may be true that outcomes may be MAR conditional on x but
not on (x,w) or vice-versa.

Definition 3.40. An example of a type two assumption is statistical indepen-
dence:

P (y|u, v) = P (y|u)

What is the benefit of using this assumption? Look at identification regions.
The identification region for P (y|u, v = k) using the data alone is given by

H[P (y|u, v = k)] =
{
P (y|u, v = k, z = 1)P (z = 1|u, v = k)

+γk · P (z = 0|u, v = k), γk ∈ ΓY
}

Since the statistical independence assumption states that P (y|u) = P (y|u, v =
k) ∀k ∈ V , P (y|u) must lie within each identification region H[P (y|u, v =
k)], k ∈ V . Furthermore, any particular distribution that lies within all of
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these k-specific regions will be a feasible value for P (y|u) and hence with the
assumption the identification region for P (y|u) is the intersection, viz.:

H1[P (y|u)] = ∩k∈V
{
P (y|u, v = k, z = 1)P (z = 1|u, v = k)

+γk · P (z = 0|u, v = k), γk ∈ ΓY
}

This assumption that y ⊥⊥ v|u may be refutable since the intersection may be
empty. Note that in the binary outcomes case, it turns out that6

H1[P (y = 1|u)] (3.7)
=
[

max
k∈V

P (y = 1|u, v = k, z = 1)P (z = 1|u, v = k), (3.8)

min
k∈V

P (y = 1|u, v = k, z = 1)P (z = 1|u, v = k) (3.9)

+P (z = 0|u, v = k)
]

(3.10)

For binary y, without the assumption:

H[P (y = 1|u, v = k)] = [P (y = 1|u, v = k, z = 1)P (z = 1|u, v = k),
P (y = 1|u, v = k, z = 1)P (z = 1|u, v = k) + P (z = 0|u, v = k)]

With the statistical independence assumption P (y = 1|u) = P (y = 1|u, v =
k) ∀k:

H1[P (y = 1|x)] =
[
max
k∈W

P (y = 1|x,w = k, z = 1)P (z = 1|x,w = k),

min
k∈W

P (y = 1|x,w = k, z = 1)P (z = 1|x,w = k) + P (z = 0|x,w = k)
]

Parametric assumptions are weaker than distributional assumptions, so
they may be more credible.

Let us now look at different assumptions on means.

Definition 3.41. The assumption of means missing at random (MMAR) is:

E[g(y)|x,w, z = 0] = E[g(y)|x,w, z = 1] = E[g(y)|x,w]

Lemma 3.42. The means missing at random assumption is non refutable and
results in point identification.

Proof.

E[g(y)|x] LIE=
∑
k∈W

E[g(y)|x,w = k]P (w = k|x)

MMAR=
∑
k∈W

E[g(y)|x,w = k, z = 1]P (w = k|x)

6See Manski (2007: 67) [59] for a proof.
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Definition 3.43. Mean independence (a version of the statistical independence
assumption) may be a refutable assumption:

E[g(y)|x,w = k] = E[g(y)|x]

Without the assumption, the identification region is

H[E(g(y)|x,w = k)] = [L(k), U(k)]

where L(k) ≡ LB(w = k) and U(k) ≡ UB(w = k) are lower and upper bounds,
respectively, given by

L(k) = E[g(y)|x,w = k, z = 1]P (z = 1|x,w = k) + g0P (z = 0|x,w = k)
U(k) = E[g(y)|x,w = k, z = 1]P (z = 1|x,w = k) + g1P (z = 0|x,w = k)

With the assumption of mean independence:

H1[E(g(y)|x)] = [max
k∈W

L(k), min
k∈W

U(k)]

This is a generalisation of (3.10); set g(y) = 1[y = 1] to get (3.10). Here,
E(g(y)|x) is not point identified and there is no assumption directly on the
distribution of the unobserved variables. The assumption may be refutable if
the intersection is empty:

H1[E(g(y)|x)] = ∩k∈WH[E(g(y)|x,w = k)]

Another assumption – weaker again – is means missing monotonically.

Definition 3.44. The assumption of means missing monotonically (MMM)
is:

E[g(y)|x,w, z = 1] ≥ E[g(y)|x,w, z = 0] (3.11)

We need a context to interpret this, e.g. the mean market wage of those
that work is no less than that of those who don’t work. It is too weak an
assumption to point identify the conditional mean E[g(y)|x], but it does have
identifying power. To see this, first note that without this assumption we get
that

E[g(y)|x] LIE=
∑
k∈W

[E[g(y)|x,w = k, z = 1]P (w = k, z = 1|x)]

+
∑
k∈W

E[g(y)|x,w = k, z = 0]︸ ︷︷ ︸
unknown

P (z = 0, w = k|x)


Note that LTP implies that P (w = k|x) = P (w = k, z = 1|x) + P (w = k, z =
0|x). With the assumption of means missing monotonically (??), we have that:

E(g(y)|x) ≤
∑
k∈W

E[g(y)|x,w = k, z = 1]P (w = k|x)
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∴ H1[E[g(y)|x]] =
[
E[g(y)|x, z = 1]P (z = 1|x) + g0P (z = 0|x)∑
k∈W

E[g(y)|x,w = k, z = 1]P (w = k|x)
]

This is a right-truncated subset of the region obtained using the data alone,
i.e. the smallest feasible value of E[g(y)|x] is the same as that when using the
data alone and the largest is the value that E[g(y)|x] would take under the
assumption of means missing at random.

Finally, letting the set V be ordered, we have the weaker assumption of
monotone regressions or mean monotonicity.

Definition 3.45. The assumption of monotone regressions or mean mono-
tonicity is:

E[g(y)|u, v = k] ≥ E[g(y)|u, v = k′]
for all (k, k′) ∈ V × V such that k ≥ k′.

The identification region for E[g(y)|u] under the monotone regression as-
sumption follows from a very complicated derivation by Manski & Pepper
(2000) [61]:

H1{E[g(y)|u]}

=
[∑
k∈V

P (v = k){max
k′≤k

E[g(y)z + g0(1− z)|u, v = k′]},

∑
k∈V

P (v = k){min
k′≥k

E[g(y)z + g1(1− z)|u, v = k′]}
]

which is a subset of the region obtained using the data alone and a superset
of the one obtained under mean independence. This makes sense since the
assumption of monotone regressions is a weaker assumption than that of mean
independence.

Definition 3.46. Imputations assign some logically possible value (e.g. y∗) to
each element of the sample that has a missing realization of y.

For instance, we can estimate E[g(y)] using the sample average:

θN = 1
N

N∑
i=1

g(yi)zi + g(y∗i )(1− zi)

So, θN uses the actual value of y when it is available and the imputation when
it is unavailable. By the SLLN, θN converges to

θ ≡ E[g(y)|z = 1]P (z = 1) + E[g(y∗)|z = 0]P (z = 0)
as N increases. Sometimes, the imputed value is y∗i drawn from the distribution
P (y|z = 1), so θ = E[g(y)] if outcomes are MAR; alternatively, y∗i is sometimes
drawn from P (y|v = vi, z = 1) where it is assumed that outcomes are MAR
conditional on an IV v. Note that θ ∈ H[E[g(y)]] independently of the imputa-
tion method used by the nature of imputations, i.e. they are logically possible
values of the missing data. θ = E[g(y)] only if E[g(y∗)|z = 0] = E[g(y)|z = 0].
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3.3.1 Decomposition of mixtures
The decomposition of mixtures or mixing problem is as follows:

A = BC +D(1− C)
We know all A,B,C,D lie in the unit interval and A and C are known. We
must determine feasible values of (B,D). Similarly, we want to learn about
P (y|x,w) when we only know P (y|x) and P (w|x) from the data. Using LTP,
for each covariate value ζ ∈ X:

P (y|x = ζ)︸ ︷︷ ︸
mixture

=
∑
ω∈W

P (y|x = ζ, w = ω)︸ ︷︷ ︸
components

P (w = ω|x = ζ)︸ ︷︷ ︸
mixing probabilities

(3.12)

where w = ω refers to the mixing covariate. We can restrict [P (y|x = ζ, w =
ω), ω ∈ W ] to vectors of distributions that solve the above equation when we
know P (y|x) and P (w|x). With no assumptions the identification region is:
H{[P (y|x = ζ, w = ω), ω ∈W ]}

=
[
γω ∈ ΓY , ω ∈W :

P (y|x = ζ) =
∑
ω∈W

γωP (w = ω|x = ζ)
]

which is always nonempty. In more familiar notation, the mixing problem is:

P (y|x) =
∑
k

P (y|x,w = k)P (w = k|x)

and the identification regions is given by:

H[P (y|w = k), k ∈W ] = [γk ∈ ΓY , k ∈W : P (y) =
∑
k∈W

γkP (γ = k)]

We will soon study the identifying power of different assumptions that may
be combined with the data. The distribution P (y|x = ζ) is a mixture of the
distributions [P (y|x = ζ, w = ω), ω ∈ W ], which are called components of the
mixture. [P (w = ω|x = ζ), ω ∈ W ] are the mixing probabilities. w is referred
to as the mixing covariate. Ecological inference and contaminated sample are
two of the main motivations behind the decomposition of mixtures problem.
Political scientists and sociologists describe the following problem as that of
ecological inference. Let us say that we observe two sampling processes, one
reveals P (y|x) and the other reveals P (w|x). Ecological inference concerns the
problem of inferring P (y|x,w) given knowledge of P (y|x) and P (w|x).

Example 3.47.

y =
{

1 if vote democrat
0 if not vote democrat

w =
{

1 if white
0 if not white
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Let y ∈ {ya, yb}, where we are only interested in yb. Say instead of observing
ya and yb, we observe y as

y ≡ ya(1− w) + ybw

where w is an unobserved binary random variable, w ∈ {0, 1}. y is said to be
a contaminated measure of yb. We want to know P (yb):

P (yb) = P (yb|w = 0)P (w = 0) + P (yb|w = 1)P (w = 1)

Definition 3.48. When w ⊥⊥ yb, the term contaminated sampling is used to
describe this observational problem. Without this assumption, the problem is
described as that of corrupted sampling.

Remark 3.49. If we knew P (w|x), then the sampling process would reveal
P (y|x,w = 1), but not P (yb|x,w = 0). So, if we knew whether the observations
were missing or not, then we would be able to determine P (y|x,w = 1), so cor-
rupted sampling would be inference with missing outcomes and contaminated
sampling would be inference under the assumption of outcomes MAR.

Definition 3.50. Let y = y∗+u where y∗ is the unobserved outcome of interest
and u is an unobserved random variable. Then the observable y measures the
unobservable y∗ with errors-in-variables.

Definition 3.51. The problem of inferring P (y∗) given P (y) is the deconvo-
lution problem. Usually researchers assume that u ⊥⊥ and P (u) is centered at
zero.

Let us assume that the mixing covariate w is binary, w ∈ {0, 1}. Suppress
the conditioning on x, so P (y|x) and P (w|x) are written as P (y) and P (w);
also let p ≡ P (w = 0). Using the LTP in (3.12):

P (y) = pP (y|w = 0) + (1− p)P (y|w = 1) (3.13)

We know P (y), p and 1 − p, but we don’t know P (y|w = 0) and P (y|w = 1).
The ID region is:

H[P (y|w = 0), P (y|w = 1)]
= {(γ0, γ1) ∈ ΓY × ΓY : P (y) = pγ0 + (1− p)γ1}

It is sufficient to study identification regions for either of P (y|w = 0) or
P (y|w = 1) because (3.13) implies that specifying one implies a unique value
for the other. Therefore, determining either H[P (y|w = 0)] or H[P (y|w = 1)]
determines the joint identification region H[P (y|w = 0), P (y|w = 1)]. WLOG,
consider P (y|w = 1). Rearranging (3.13) yields

P (y|w = 1) = [P (y)− pP (y|w = 0)]/(1− p)

We can get an identification region for P (y|w = 1) by allowing P (y|w = 0)
to range over all elements of ΓY . This is {[P (y) − pγ0]/(1 − p), γ0 ∈ ΓY }.
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Unfortunately, some of the elements of this set may yield probabilities that lie
outside [0, 1] and so are not proper probability distributions. Without these
elements, we get the identification region:

H[P (y|w = 1)] = ΓY ∩ {[P (y)− pγ0]/(1− p), γ∈ΓY }

For event probabilities, ICBST7

H[P (y ∈ B|w = 1)] = [0, 1] ∩ [[P (y ∈ B)− p]/(1− p), P (y ∈ B)/(1− p)]

The lower bound is positive when p < 1−P (y ∈ B) and so is informative in this
case. The upper bound is positive when p < P (y ∈ B) and so is informative in
this case. Both conditions hold when p < 1

2 and then the width of the interval
is p

1−p .
With event probabilities,

P (y ∈ B) = P (y ∈ B|w = 1)P (w = 1)︸ ︷︷ ︸
1−p

+P (y ∈ B|w = 0)P (w = 0)︸ ︷︷ ︸
p

P (y ∈ B|w = 1) = P (y ∈ B)− P (y ∈ B|w = 0)p
1− p

The lower bound on P (y ∈ B|w = 1) is:

P (y ∈ B)− p
1− p

The upper bound on P (y ∈ B|w = 1) is:

P (y ∈ B)
1− p

So
H[P (y ∈ B|w = 1)] = [0, 1] ∩ [P (y ∈ B)− p

1− p ,
P (y ∈ B)

1− p ]{
P (y∈B)−p

1−p > 0 =⇒ P (y ∈ B) > p
P (y∈B)

1−p < 1 =⇒ P (y ∈ B) < 1− p

p < P (y ∈ B) < 1− p
p < 1− p

2p < 1

p <
1
2

7See Manski (2007: 100) [59] or for a more thorough proof, see Horowitz & Manski (1995,
corollary 1.2) [47].
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3.4 Treatment Response

Analysis of treatment response is an interesting problem of prediction with
missing outcomes: predict outcomes that would occur if alternative treatment
rules were applied to a population. We can at most observe the realised out-
comes, i.e. outcomes experienced under received treatments, but not the coun-
terfactual outcomes, i.e. outcomes that would be experienced under other
treatments. For example, if a group are ill and there are two treatments, viz.
drugs or surgery where the outcome of interest is life span, then we may wish to
predict the life spans that might occur should all patients of a certain type be
treated by drugs. However, the only available data on realised life spans would
involve some patients that were treated by drugs and the rest by surgery. An-
other example relates to economic policy where workers displaced from a plant
closure were either retrained or assisted in job search where the outcome of in-
terest might be income. We may wish to learn the incomes that might occur if
all workers with particular backgrounds were retrained and then compare these
incomes with those that would occur if the same workers were given assistance
in job search instead. However, available data on realised incomes will most
likely involve a subgroup of workers that were retrained and another group,
each of who were given job assistance.

More formally, let T be the set of all feasible treatments and each member
of the study population possess covariates xj ∈ X and a response function
yj(·) : T −→ Y mapping mutually exclusive and exhaustive treatments t ∈ T
into outcomes yj(t) ∈ Y . Therefore, yj(t) is the outcome person j would
experience if s/he were to receive treatment t.8 The subscript j on yj(·) allows
treatment response to be heterogeneous across members of the population, i.e.
they need not respond to treatment in the same way. Also, treatment response
is individualistic, i.e. the outcome that person j experiences is independent of
treatments other people receive, hence the notation yj(·). Let zj ∈ T be person
j’s received treatment, so y≡yj(zj) is the realised outcome, while counterfactual
outcomes are denoted by [yj(t), t 6= zj ]. Observation may reveal P (y, z|x)
of realised outcomes and treatments for people with covariates x, while the
distribution of outcomes that would occur if all people with covariate x received
treatment t is denoted by P [y(t)|x]; so, to predict outcomes under a policy of
treatment t for people with covariates x, we must infer P [y(t)|x].

Definition 3.52. The selection problem refers to the problem of identification
of outcome P [y(t)|x] given a knowledge of P (y, z|x).

With treatment response, where z = t is treatment t, from data alone, the

8yj(t) is also called a potential, latent or conjectural outcome.
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problem can be written as:

P [y(t)|x] LTP= P [y(t)|x, z = t]P (z = t|x)
+ P [y(t)|x, z 6= t]︸ ︷︷ ︸

unobserved

P [z 6= t|x]

= P (y|x, z = t)P (z = t|x)
+ P [y(t)|x, z 6= t]P (z 6= t|x)

where P [y(t)|x, z 6= t] corresponds to missing outcomes and the remaining
quantities after the second equality are known. The identification region using
empirical evidence alone is given by

H[P (y(t)|x)] = [P (y|x, z = t)P (z = t|x) + γP (z 6= t|x); γ ∈ ΓY ]

Note that P [y(t)|x] = P (y|x, z = t) if treatment selection is random, but
generally differ otherwise. The primer is the distribution of outcomes that
would occur if everyone with covariates x received treatment t, while the latter
is the distribution of outcomes that occur for people who have covariates x and
actually receive treatment t.

To learn about policies mandating different treatments for people with co-
variates x, we would like to know about {P [y(t)|x], t ∈ T}. The identification
region using only data is

H{P [y(t)|x], t ∈ T} = ×t∈TH{P [y(t)|x]}

We learn more about P [y(t)|x] but less about P [y(t′)|x], t′ 6= t, the more often
that treatment t is selected in the study population. Furthermore, data alone
cannot answer the question as to whether outcomes vary with treatment since
counterfactuals are unobservable and observation of realised treatments and
outcomes is uninformative regarding all the counterfactual outcome distribu-
tions {P [y(t)|x, z 6= t], t ∈ T}. It may be possible that in fact for each person
j, yj , the person’s realised outcome is the same as the potential outcome under
any treatment yj(t), t ∈ T . Therefore, data alone cannot refute the hypothesis
that P [y(t)|x], t ∈ T are all the same, i.e. that hypothesis is nonrefutable.

Definition 3.53. Focus on two treatments t and t′. The average treatment
effect (ATE) is

E[y(t)|x]− E[y(t′)|x]

Remark 3.54. Note that the hypothesis ATE = 0 is non refutable with
data alone since counterfactual observations are missing it is possible that
yj(t) = yj(t′) ∀j. This hypothesis only becomes refutable if we combine the
data with sufficiently strong distributional assumptions, e.g. randomisation of
treatment:

P (y(t)|x, z = t) = P (y(t)|x, z 6= t)
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which gives point identification. The distributional assumption of statistical
independence is the selection problem analog of MAR, i.e.

P (y(t)|x) = P (y|x, z = t) = P (y(t)|x, z 6= t)

is almost only credible in classical randomized experiments. Equivalently

z = t ⊥⊥ y|x

When treatment selection is random, we have point identification of P (y(t)|x)
as mentioned before. From LIE and the observability of realised outcomes:

E[y(t)|x]− E[y(t′)|x]
= E(y|x, z = t)P (z = t|x)

+E[y(t)|x, z 6= t]︸ ︷︷ ︸
∈[y0,y1])

P (z 6= t|x)

−E(y|x, z = t′)P (z = t′|x)
−E[y(t′)|x, z = t′]︸ ︷︷ ︸

∈[y0,y1]

P (z 6= t′|x)

So the identification region for ATE is

H{E[y(t)|x]− E[y(t′)|x]}
=
[
E(y|x, z = t)P (z = t|x) + y0P (z 6= t|x)
−E(y|x, z = t′)P (z = t′|x)− y1P (z 6= t′|x),
E(y|x, z = t)P (z = t|x) + y1P (z 6= t|x)
−E(y|x, z = t′)P (z = t′|x)− y0P (z 6= t′|x)

]
which necessarily contains zero and its width is given by

(y1 − y0)[P (z 6= t|x) + P (z 6= t′|x)] = (y1 − y0)[2− P (z = t|x)− P (z = t′|x)]

i.e. the width of the interval depends on the fraction of the population under
study that receive treatments t and t′. Since the sum of the fraction is one,
the width of the interval is between (y1 − y0) and 2(y1 − y0). When t and t′

are the only feasible treatments, the width is (y1− y0). When there is no data,
ATE lies in [y0− y1, y1− y0] and the width is 2(y1− y0). Therefore, data alone
restricts the ATE to half its logically possible range.

Example 3.55. See section 7.2 in Manski (2007).

Incorporating compliance, let z represent received treatment and d repre-
sent assigned treatment. Compliance implies zj = dj , while non compliance
implies zj 6= dj . If there is no crossover allowed:

P (y(a)|x) randomization= P (y(a)|x, d = a) full compliance= P (y|x, d = a)
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We have point identification. Allowing cross over:

P (y(b)|x) randomization= P (y(b)|x, d = b)
LTP= P (y(b)|x, d = b, z = b)P (z = b|x, d = b)
+ P [y(b)|x, d = b, z 6= b]P (z 6= b|x, d = b)
= P (y|x, d = b, z = b)P (z = b|x, d = b)
+ P (y(b)|x, d = b, z 6= b)︸ ︷︷ ︸

unknown

P (z 6= b|x, d = b)

Finally note that P (y(·)|x, z) = P (y(·)|x) is a stronger assumption than P (y(t)|x, z) =
P (y(t)|x).

When treatment response is linear in the treatment with everyone having
the same slope parameter, we have a lot of identifying power but not a lot of
credibility. This is the case for linear simultaneous equation models. According
to the law of decreasing credibility, weaker assumptions are more credible. One
such weaker assumption is the restriction that outcomes vary monotonically
with the magnitude of the treatment, which we may have reason to believe in
particular circumstances. This is an example of a shape restriction.

Definition 3.56. The assumption of monotone treatment response (MTR)
posits that for all persons j and for all treatment pairs (s, t):

t ≥ s =⇒ yj(t) ≥ yj(s) ∀j

This is a non refutable assumption. Note that

y0j(t) =
{
yj if t ≥ zj
y0 if t < zj

y1j(t) =
{
y1 if t ≥ zj
yj if t < zj

and
y0j(t) ≤ yj(t) ≤ y1j(t)

and bounds are informative. See diagram 3.3. So P (y0(t)) is stochastically
dominated by P (y(t)), which in turn is stochastically dominated by P (y1(t)).
So, for parameters that respect stochastic dominance:

D[y1(t)] ≥ D[y(t)] ≥ D[y0(t)]

Example 3.57. See bounds on parameters that respect stochastic dominance,
section 9.2 in Manski (2007) [59] and bounds on treatment effects, section 9.3
in Manski (2007) [59]. Graphs will be provided during lectures if this topic is
covered.
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Figure 3.3: Monotone Treatment Response.

MTR allows heterogeneous response functions and is nonrefutable since
∀j,∃!yj(·), which is observable, viz. yj ≡ yj(zj). So, data alone is consistent
with the hypothesis that all response functions are weakly (monotone) increas-
ing. For example, empirical evidence is consistent with the hypothesis that
each person’s response function is flat, i.e. {yj(t) = yj , t ∈ T, ∀j}.

Monotonicity is an example of a shape restriction. Other related examples
of shape restrictions include semimonotonicity and concave monotonicity.

Example 3.58. Demand analysis is an example of where yj(·) can be as-
sumed to be monotone. One result from price theory is that market demand
is generally a downward-sloping function of price.

Example 3.59. Production analysis contains another such example where
we can assume monotonicity. Denote output by yj(t) and input by t. Then
when there is a single input, e.g. labour, yj(t), the production function is
monotone; when there is a vector of inputs, e.g. labour and capital, then
treatment response yj(t) displays semimonotonicity. In both of these cases,
production theory generally posits that output weakly increases with the quan-
tity of inputs. Suppose that there are K inputs and let s ≡ (s1, s2, . . . , sK)
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and t ≡ (t1, t2, . . . , t2) be two input vectors. Production theory predicts
yj(t) ≥ yj(s) if tk ≥ sk ∀k = 1, . . . ,K, though it does not predict the ordering
of yj(t) and yj(s) when t and s are unordered, each with some components
larger than the other. So, production functions are semimonotone. The as-
sumption of diminishing marginal returns implies that the production function
displays concavity in each component holding all other components fixed.

I omit the conditioning on x for simplicity for this section. Let us look at
means of increasing functions of outcomes, so allow f : Y −→ R be a weakly
increasing function and note that E[f(y(t))] respects stochastic dominance.
Without any assumptions:

f(y0)P (z 6= t) + E[f(y)|z = t]P (z = t) ≤ E[f(y(t))]

≤ f(y1)P (z 6= t) + E[f(y)|z = t]P (z = t)

E[f(y(t))] LIE= E[f(y(t))|t = z]P (t = z) + E[f(y(t))|t 6= z]︸ ︷︷ ︸
unobserved

P (t 6= z)

We might know (or constrain) y ∈ [y0, y1]. With the assumption of MTR

E[f(y(t))] = E[f(y(t))|z = t]P (z = t) + E[f(y(t))|z 6= t]P (z 6= t)
= E[f(y(t))|z = t]P (z = t) + E[f(y(t))|z > t]P (z > t) + E[f(y(t))|z < t]P (z < t)

Remember that t in y(t) is the treatment under consideration and z = t is
the assigned treatment. Also note that with E[f(y(t))|z > t]P (z > t), these
people were assigned a treatment greater than t, so the outcome lies in [y0, y],
while with E[f(y(t))|z < t]P (z < t), these people were assigned a treatment
less than t, so the outcome lies in [y, y1]. The lower bound is given by

E[f(y)|z = t]P (z = t) + f(y0)P (z > t) + E[f(y)|z < t]P (z < t)
E[f(y)|z ≤ t]P (z ≤ t) + f(y0)P (z > t)

The upper bound is given by

E[f(y)|z = t]P (z = t) + E[f(y)|z > t]P (z > t) + f(y1)P (z < t)
E[f(y)|z ≥ t]P (z ≥ t) + f(y1)P (z < t)

Definition 3.60. The monotone treatment selection (MTS) assumption states
that

s′ ≥ s =⇒ E[y(t)|z = s′] ≥ E[y(t)|z = s] ∀t ∈ T

So, as illustrated in figure 3.4, MTS means that:

E[y(t)|t < z] =
{
y0 lower bound
E[y|t = z] upper bound

E[y(t)|t > z] =
{
E[y|t = z] lower bound
y1 upper bound
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Figure 3.4: Monotone treatment selection.

MTS is a nonrefutable assumption, a version of which was the assumption
previously introduced as ‘means missing monotonically, e..g when the mean
market wage of those that work is at least as large as that of those who don’t.
To appreciate the subtle distinction between MTR and MTS, consider the
statement ‘wages increase with schooling.’ The MTR interpretation is that
each individual’s wage is a weakly increasing function of conjectured years of
schooling. So, MTR is consistent with the idea that education is a production
process. The MTS interpretation is that those who select higher levels of
schooling have weakly higher average wage functions than those who select
lower levels of schooling. So, MTS is consistent with models that focus on
the tendency for people with higher ability to have higher wage functions and
higher education. A third interpretation is that observed wages increase with
the observed years of schooling, i.e. E(y|z = t) increases with t – a statement
regarding the empirical evidence on realised wages, rather than an assumption.

E(y(t)) = E[y(t)|z < t]P (z < t)+E[y(t)|z = t]P (z = t)+E[y(t)|z > t]P (z > t)

Manski & Pepper (2000) [61] derive bounds on mean outcomes and average
treatment effects. Assumption MTS implies a sharp bound on E[y(t)]. The
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lower bound for E(y(t)) is given by

y0P (t < z) + E[y|t = z]P (t ≥ z)

The upper bound for E(y(t)) is given by

E[y|t = z]P (z ≤ t) + y1P (z > t)

Combining MTR and MTS, the sharp bound is then∑
s<t

E(y|z = s)P (z = s) + E(y|z = t)P (z ≥ t) ≤ E[y(t)] (3.14)

≤
∑
s>t

E(y|z = s)P (z = s) + E(y|z = t)P (z ≤ t) (3.15)

The bound on the ATE with MTR and MTS combined is

0
MTR
≤ E[y(t)]− E[y(s)]

≤
∑
t′>t

E(y|z = t′)P (z = t′) + E(y|z = t)P (z ≤ t)

−
∑
s′<s

E(y|z = s′)P (z = s′)− E(y|z = s)P (z ≥ s)

where the final inequality follows by subtracting the LHS of (3.14) from the
RHS of (3.15).

Combining MTR and MTS increases the identifying power since they are
informative even if the outcome space Y is unbounded unlike either assumption
alone. Furthermore, the combined assumption is refutable as shown by Manski
& Pepper (2000) [61]: E(y|z = t) is a weakly increasing function of t, so if
the data show otherwise, then at least one of the two assumptions must be
incorrect.

Example 3.61. See section 9.5 in Manski (2007) [59].

3.4.1 Planning Under Ambiguity

Definition 3.62. When treatment varies with observed covariates, we describe
this as screening, profiling or statistical discrimination.

Example 3.63. A medical doctor choosing treatment for a population of pa-
tients may observe each patient’s previous medical history and the results of
diagnostic tests. The doctor may make the treatment rule a function of the
covariates of the patients. So, acting in the patients’ interests, s/he may chose
patient health status as the outcome of interest and welfare may be measured
as the health status minus the cost of the treatment.
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Example 3.64. Reflect on the case of a judge who chooses sentences for a
population of convicts. Given the legislative guidelines, the judge may con-
sider observed covariates such as each offender’s previous criminal record and
demeanor in court when sentencing each convict.

Identification and inference issues prevent complete knowledge of treatment
response, so from a planning perspective it is important to know how a planner
with partial knowledge of treatment response may reasonably make treatment
choices. An actual planner may only have partial knowledge of the distribution
of treatment response so s/he may not be able to achieve an optimal policy.
This is the problem where the planner faces ambiguity, also known as ignorance,
uncertainty and Knightian uncertainty.

Definition 3.65. ‘A decision maker with a partially known objective function
is said to face a problem of choice under ambiguity.’ (Manski, 2007: 213) [59]

Let C be the choice set and f(·) : C −→ R be the objective function
that the decision maker wants to maximise that maps actions into real-valued
outcomes. When the choice set and the objective function are known by the
decision maker, s/he faces a standard optimisation problem. When only the
choice set is known to the decision maker, s/he faces a problem of choice under
ambiguity.

Definition 3.66. Fractional rules allocate different treatments to observation-
ally identical individuals.9

Let f(·) : C −→ R and f(·) ∈ F where F is some set of possible objective
functions.

Definition 3.67. An action or decision d ∈ C is dominated if ∃c 6= d feasible
action such that

g(d) ≤ g(c) ∀g(·) ∈ F
g(d) < g(c) for some g(·) ∈ F

9There is an ethical problem with fractional treatment rules, however since they violate
the normative principle of equal treatment of equals. Ex-ante, these rules do not violate this
principle since observationally equivalent people have the same chance of receiving a spe-
cific treatment. However, ex-post, these rules do violate this principle since observationally
equivalent people actually receive different treatments. Ex-ante equal treatment with such
rules is found in example such as call for jury service, random drug testing and the Vietnam
draft lotteries. See the example given by Manski (2007: 234-5) [59] and also note that once
a treatment is known to be significantly effective and another insignificant, medical ethos
typically requires cessation of the insignificant treatment. On the other hand, the fractional
minimax-regret rule – soon to be defined – is attractive in the sense that it allows society
to diversify risk that is privately indivisible; a person receives either treatment a or b, so
an individual cannot diversify but a society can diversify by dividing the population and
allocating positive fractions of each treatment to parts of the population.
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Let D ⊆ C be the set of all undominated actions. Either there is indifference
between c and d, i.e.

g(c) = g(d) ∀g(·) ∈ F

or

g(c) > g(d) some g(·) ∈ F
g(c) < g(d) some g(·) ∈ F

A decision maker will never choose a dominated action from those in his/her
feasible choice set. Let D be the undominated subset of C and c ∈ D, d ∈ D.
Then we either have that [g(c) = g(d), ∀g(·) ∈ F ] or ∃g′(·) ∈ F ∧ g′′(·) ∈
F : g′(c) > g′(d) ∧ g′′(c) < g′′(d). In the first instance, the decision maker
is ambivalent between actions c and d, whereas in the second, c and d are
unordered. Note that in an optimisation problem, expanding the set of feasible
choices C to C ∪e can’t decrease welfare since the decision maker won’t choose
e if C contains a better action e. However, with planning under ambiguity,
expanding the choice set may decrease welfare. To see this, suppose that e
neither dominates nor is dominated by any action in the undominated set D.
Then the new set of undominated actions will be D∪e and if the decision maker
chooses e, it may be the case that f(e) < f(c). One way of keeping the idea of
optimisation, even acknowledging the problem that there is no optimal choice
among undominated actions, is to transform the unknown function f(·) into a
known function h(·) that may be maximised. Furthermore, as it is difficult to
determine the undominated set D, usually the maximisation is over the entire
set of feasible actions C. Bayes decision rules (defined shortly) arise from
averaging the elements of F and maximising the resulting function. Maximin
and minimax-regret criteria (both defined shortly) arise from seeking an action
that works uniformly well over all elements of F .

Firstly, let us introduce and examine Bayes decision rules, where the deci-
sion maker only knows f(·) ∈ F . Let π be a probability distribution over the
elements of g(·) ∈ F where π expresses the decision maker’s personal beliefs
about where f(·) lies within F ; thus, π is a subjective probability distribution
or a prior distribution. For each feasible action c, let h(c) denote the mean
value of g(c) across feasible functions g(·), where the mean is calculated using
π:

h(c) ≡
∫
g(c)dπ

Definition 3.68. A Bayes decision with respect to π or Bayes rule or subjective
expected utility (SEU) soles the optimisation problem

max
c∈C

∫
g(c)dπ

where
∫
g(c)dπ is the subjective mean of g(c).
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Remark 3.69. A basic rationality argument for using a Bayesian criterion is
that Bayes decisions are generally undominated when the expectations

∫
g(·)dπ <

∞. Even if f(·) is not known in practice, we can act as if it is and impute the
objective function before choosing an action that is optimal under the imputed
function.

Definition 3.70. ‘Formally, an imputation rule selects some h(·) ∈
F and chooses an action that maximizes this h(·). Imputation rules
are special cases of Bayes rules that place probability on a single
element of F .’ (Manski, 2007: 216) [59]

Definition 3.71. For every feasible action c ∈ C, let h(c) denote the mini-
mum value of g(c) for all feasible functions g(·), i.e. h(c) ≡ ming(·)∈F g(c). A
maximin rule (MM) involves maximising over the worst criterion for all actions
and solves the optimisation problem:

max
c∈C

min
g(·)∈F

g(c)

where the inner minimisation minimises the value of g while the outer maximi-
sation maximises over the minimum value of g.

Definition 3.72. Denoting the action c and the objective function to be some
g(·), the loss in potential welfare from choosing c is called regret:

max
d∈C

g(d)− g(c)

So, regret is the difference between outcome under the chosen action and the
best possible outcome across all actions.

Denote h(c) ≡ maxg(·)∈F [maxd∈C g(d)− g(c)] to be the maximum regret
of action c over all feasible functions g(·).

Definition 3.73. The minimax-regret rule (MMR) minimises over the maxi-
mum regret and solves the optimisation problem

min
c∈C

max
g(·)∈F

[
max
d∈C

g(d)− g(c)
]

With regard to the MMR, we can calculate it in three steps.

1. Find the regret for any given action. For an action δ

regret = max (α, β)− (α+ (β − α)δ)

There are two cases:

Case 1: if max (α, β) = α:

regret = −δ(β − α) = δ(α− β)
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Case 2: if maxα, β) = β:
regret = (β − α)(1− δ)

2. Find the max of these regrets:

Case 1: δ(α− βL)
Case 2: (βU − α)(1− δ)

3.

δ(α− βL) = (βU − α)(1− δ)

δMMR = βU − α
βU − βL

Example 3.74. MM and MMR are only the same in special cases. For exam-
ple, let maxd∈C g(d) be constant for all feasible g(·) with value K. Then the
maximum regret of action c is given by

max
g(·)∈F

[max
d∈C

g(d)− g(c)] = max
g(·)∈F

[K − g(c)] = K − min
g(·)∈F

g(c)

MMR is unaffected by K that requires choosing an action c ∈ C to minimise
−ming(·)∈F g(c), which is the same as the MM criterion.

With partial compliance, ζ denotes assigned treatment and z denotes re-
ceived treatment. Say there are two treatments, a status quo treatment, t = a
and an innovation, t = b. Let the outcome of interest be binary:

y(t) =
{

1 success of treatment t
0 failure

Assume a randomized experiment is performed on a study population. Indi-
viduals assigned to the innovation can choose the status quo treatment instead,
as they wish, but those assigned to the status quo treatment cannot cross over
to receive the innovation. Data point-identifies P [y(a) = 1] but only partially
identifies P [y(b) = 1]; see Manski (2007) [59] section 7.4 for the proof of this.

H{P [y(b) = 1]}
=
[
P (y = 1|ζ = b, z = b)P (z = b|ζ = b),
P (y = 1|ζ = b, z = b)P (z = b|ζ = b)
+P (z 6= b|ζ = b)

]
Now imagine the case where a planner has to choose treatments for a new pop-
ulation that are identical to the study distribution in terms of its distribution
of treatment response. Noncompliance is no longer an issue and the planner’s
objective is to maximise the rate of treatment success. One feasible treatment
rule assigns the innovation to everyone, another assigns the status quo to every-
one and the rest include fractional treatment allocations that randomly assign
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the innovation to a specific fraction of the population and the rest are given
the status quo treatment. Let U(δ, P ) be the social welfare from assigning a
fraction δ of the population to the innovation and 1−δ to the status quo where
P is the population distribution of the treatment response. In addition, let
α ≡ P [y(a) = 1] and β ≡ P [y(b) = 1], so

U(δ, P ) = α(1− δ) + βδ = α+ (β − α)δ

The planner solves the optimisation rule

max
δ∈[0,1]

U(δ, P )

The optimal rule is such that:

δ =


1 β > α

0 β < α

p ∈ [0, 1] β = α

The maximum value of social welfare attainable is max(α, β). Consider the
case where the planner knows α and only knows that β ∈ [βL, βU ], where

βL ≡ P (y = 1|ζ = b, z = b)P (z = b|ζ = b)
βU ≡ P (y = 1|ζ = b, z = b)P (z = b|ζ = b) + P (z 6= b|ζ = b)

δ = 1 dominates all other treatment allocations if α ≤ βL and δ = 0 dominates
all other treatment allocations if α ≥ βU . In the first case, while the planner
does not know the exact value of β, s/he knows that β ≥ α; the planner knows
that α ≥ β in the second case. The planner faces the problem of choice under
ambiguity if βL < α < βU so s/he cannot order α and β and so all treatment
allocations are undominated. The planner can for instance use MM or MMR
or Bayes to choose an allocation.

An MM planner acts as if β = βL (i.e. the smallest feasible value) and
solves the optimisation problem

max
δ∈[0,1]

α+ (βL − α)δ

With cases where βL < α < βU , δMM = 0, i.e. everyone is assigned the status
quo. This is not a good property of the MM rule.

An MMR planner who chooses allocation δ has a regret at β of

max(α, β) + [α+ (β − α)δ] = (α− β)δ · 1[β < α]
+ (β − α)(1− δ) · 1[β > α]

The MMR over all feasible β is given by

max
β∈[βL,βU ]

(α− β)δ · 1[β < α] + (β − α)(1− δ) · 1[β > α]
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max[(α− βL)δ, (βU − α)(1− δ)] ∵ βL < α < βU

Therefore an MMR rule solves the optimisation problem

min
δ∈[0,1]

max [(α− βL)δ, (βU − α)(1− δ)]

Note that (α− βL)δ is increasing in δ and (βU −α)(1− δ) is decreasing in δ so
δMMR is chosen to equalise these two quantities:

δMMR = βU − α
βU − βL

So, the MMR allocation is fractional, where the fraction assigned to the in-
novation, δ, is determined by the location of α within [βL, βU ]. We have that
δMMR decreases linearly from 0 to 1 as α increases from βL to βU .

Remark 3.75. The MMR rule is always fractional when in problems that
have two undominated treatments. See complement 11A in Manski (2007)[59]
for a proof; also for further work on treatment under ambiguity see Manski
(2009) [60].

A Bayesian planner places the prior π on [βL, βU ] and then computes the
subjective mean value of social welfare. Finally, the planner chooses a treat-
ment allocation so as to maximise this subjective mean, i.e. the Bayesian
planner solves the optimisation problem

max
δ∈[0,1]

α+ [Eπ(β)− α]δ

Here Eπ(β) =
∫
βdπ is the subjective mean of β with respect to the subjective

probability distribution π.

δBayes =


1 Eπ(β) > α

0 α > Eπ(β)
p ∈ [0, 1] Eπ(β) = α

Example 3.76. Let the status quo treatment be the conventional Illinois Un-
employment Insurance (UI) and the innovation be UI with a wage subsidy.
Let

y(t) =
{

1 unemployed person is rehired within 11 weeks
0 else

From Dubin & Rivers (1993, table 1):

α = 0.35 P (y = 1|ζ = b, z = b) = 0.38
P (z = b|ζ = b) = 0.68

Therefore, ICBST βL = 0.26 and βU = 0.58. Suppose that the objective is
to maximise the fraction of unemployed people that are rehired within eleven
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weeks. With an MM rule, everyone will be assigned to the conventional UI;
there is no room for innovation with MM. With the Bayes rule, everyone is
given the UI with the wage subsidy if Eπ(β) > 0.35 and everyone is given the
UI if Eπ(β) < 0.35. Finally, with the MMR rule, 72% of all unemployed people
are given the UI with the wage subsidy while 28% are given the UI.

Definition 3.77. Additive planning problems refer to a class of planning prob-
lems where ‘social welfare adds together individual welfare terms across the
members of the population.’ (Manski, 2007: 222) [59]

Definition 3.78. Utilitarian planning is a special case of additive planning
‘where the planner’s perspective on individual welfare is the same as the per-
spective that the members of the population hold for themselves.’ (Manski,
2007: 222)

Suppose that the planner observes covariates xj ∈ X for each member j
of the population and for simplicity X has finitely many elements and P (x =
ζ) > 0 ∀ζ ∈ X. Let ∆ be the space of functions δ(·, ·) mapping T ×X into the
unit interval whose values sum to one across elements of T , i.e.

∑
t∈T δ(t, ζ) =

1 ∀ζ ∈ X. Elements of ∆ are the feasible treatment rules.

Definition 3.79. Singleton rules are a special subclass of ∆, which ‘assign all
persons with the same observed covariates to one treatment.’ (Manski, 2007:
222) [59]

Therefore, δ(·, ·) is a singleton rule if the following holds: for each ζ ∈
X, δ(t, ζ) = 1 for some t ∈ T and δ(s, ζ) = 0 ∀s 6= t. As opposed to singleton
rules, nonsingleton fractional rules allocate persons with covariates ζ randomly
across multiple treatments where the assignment shares are [δ(t, ζ), t ∈ T ].
Sometimes planners are only allowed to use a subgroup of covariates to assign
treatments; e.g. s/he may not make treatment assignment a function of race
or gender. In these cases, define x as the covariates that the planner is allowed
to use.

Note that for any feasible treatment rule δ(·, ·), where the first argument is
the treatment and the second argument is the covariate, the population mean
social welfare realised if the planner chose rule δ(·, ·) has the following additive
form:

U(δ, P ) ≡
∑
ζ∈X

P (x = ζ)
∑
t∈t

δ(t, ζ) · E[u(t)|x = ζ]

where P (x = ζ) is the distribution of treatment responses and E[u(t)|x = ζ] is
the mean welfare realised when the people with covariates ζ receive treatment
t. The planner will want to solve the problem

max
δ∈∆

U(δ, P )

See Manski (2007: 224) [59] for details on the solution.
It is important to understand the correspondence between the study popu-

lation and the treatment population.
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‘To the degree that treatment response is heterogeneous, a plan-
ner must take care when extrapolating research findings from a
study population to a treatment population, as optimal treatments
in the two may differ. Hence correspondence between the study
population and the treatment population assumes considerable im-
portance.’ (Manski, 2007: 227) [59]

Definition 3.80. Let Γ be the set of feasible states of nature, so (Pγ , γ ∈ Γ) is
the set of values for the distribution of treatment response the planner considers
to be feasible. Let δ ∈ ∆ and δ′ ∈ ∆ be two feasible treatment rules. The rule
δ dominates the rule δ′ if

U(δ, Pγ) ≥ U(δ′, Pγ) ∀γ ∈ Γ
U(δ, Pγ) > U(δ′, Pγ) for someγ ∈ Γ

Remark 3.81. Note that when U(δ, Pγ) > U(δ′, Pγ) for some γ ∈ Γ and
U(δ, Pγ) < U(δ′, Pγ) for other γ ∈ Γ, then the ranking of the two rules is
ambiguous.

A Bayesian planner would solve the optimisation problem

max
δ∈∆

∫
U(δ, Pγ)dπ

where π is subjective. The separable-in-covariate structure of U(δ, Pγ) implies
that ∀ζ, δSEU(·, ·) solves maxt∈T

∫
Eγ(u(t)|x = ζ)dπ. A MM planner would

solve
max
δ∈∆

min
γ∈Γ

U(δ, Pγ)

A MMR planner would solve

min
δ∈∆

max
γ∈Γ

U ∗ (Pγ)− U(δ, Pγ)

where U ∗ (Pγ) is the optimal population mean welfare that would be possible
if it was known that P = Pγ :

U ∗ (Pγ) ≡
∑
ζ∈X

P (x = ζ){max
t∈T

Eγ [u(t)|x = ζ]}

where U ∗ (Pγ)−U(δ, Pγ) is the regret of choosing the rule δ when the state of
nature is γ.

Conditioning on the state of nature γ ∈ Γ, let T = {a, b}, u[y(t), t, ζ] = y(t)
and Y = [0, 1]. Population welfare in state γ from treatment t is Eγ [y(t)]. For
every person j, outcome yj(t) is observable ⇐⇒ zj = t and combining this
with the LIE yields

Eγ [y(a)] = E(y|z = a)P (z = a)
+ Eγ [y(a)|z = b]P (z = b)

Eγ [y(b)] = E(y|z = b)P (z = b)
+ Eγ [y(b)|z = a]P (z = a)
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Assume that 0 < E(y|z = a) < 1 and 0 < E(y|z = b) < 1 and observe that the
counterfactual quantities {Eγ [y(a)|z = b], Eγ [y(b)|z = a]} ∈ [0, 1]2. So

{Eγ [y(a)|z = b] = 1, Eγ [y(b)|z = 1] = 0}

=⇒ Eγ [y(a)] > Eγ [y(b)]

{Eγ [y(a)|z = b] = 0, Eγ [y(b)|z = 1] = 1}

=⇒ Eγ [y(a)] < Eγ [y(b)]

Therefore, the ranking of the rules is ambiguous. While confronting the se-
lection problem with data alone is insufficient for a planner to determined an
optimal treatment rule, s/he can use a MM, MMR or Bayes approach to choose
treatments. See Manski (2007: 230-32) [59] for further details on this and for
an example.

While this will not be covered by this course, in section 11.8 of Manski
(2007) [59], there is a very interesting discussion of the question of decentral-
ization where individuals make their own choices regarding treatment versus
the situation of where planners decide on treatment choice for a population.

3.5 Weak Identification

Recall that δ̂2SLS ≡ (S′XZ(SXX)−1SXZ)−1S′XZSXY = (X̂ ′X̂)−1X̂ ′Ŷ where
X̂ = X(X ′X)−1X ′Z and δ̂2SLS = δ̂(Ŵ ) = δ̂GMM,optimal(Ŝ−1) p−→ δ under
homoscedasticity E(ε2i |xi) = σ2. That is, 2SLS is GMM under homogene-
ity. But there could be a data generating process such that the empirical
distribution Fn(·) is a bad approximation to the population distribution φ(·)
or Fn(·) n−→∞−→ φ(·) by CLT but not for a given sample size. The problem
is that 2SLS (or δ̂(Ŝ−1)) in general is biased, i.e. E(δ̂) 6= δ when expecta-
tions are taken with respect to the n-sample distribution of δ̂. Remember
δ̂ ∼ Fn(·) −→n−→∞−→ φ(·).

Example 3.82. Consider the regression where y, z, β are scalars:

y = zβ + u

z = xγ + v

β is identified if E(zx) 6= 0, i.e. γ = Cov(zx)
V (x) 6= 0 so E(zx) ≥ δ > 0 is bounded

away from zero. Suppose E(zx) = 0. Now

1√
n

∑
i

xiui ∼ N1

1√
n

∑
i

ziui ∼ N2
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and the difference

β̂ − β =
1√
n

∑
i xiui

1√
n

∑
i zixi

−→ N1

N2

which is a ratio of standard Normals, i.e. a Cauchy distribution, and so has
no mean. The problem lies in zx, E(zx) = n−1/2C is such that C cannot be
estimated.

The point of weak instruments: correlation between x and z is ‘small’ (not
well defined) and this leads to poor approx of CLT. The Anderson-Rubin statis-
tic is another approach that is robust to the problem of weak instruments.
Consider

y = x1γ + zβ + ε ε ∼ N(0, σ2)
z = x1π1 + x2π2 + v (3.16)

where x1, x2 are exogenous and z is endogenous; equation (3.16) is in reduced
form. Suppose you want to test β = β0. Then replace z by the reduced form:

y − zβ0 = x1γ + z(β − β0) + ε

= x1γ + (x1π1 + x2π2 + v)(β − β0) + ε

y − zβ0 = x1θ1 + x2θ2 + v∗

where β0 is known under H0 and θ1 = γ + π1(β − β0) so importantly θ2 =
π2(β − β0). To test β0 = β, we just need to test θ2 = 0 since π2 = 0 implies
E(zx) = 0 so there is no issue with denominator in IV. The Andersen Rubin
statistic is given by:

AR(β0) = (SS0(β0)− SS1(β0))/K2

SS1(β0)/(N −K) ∼ F (1, N − 2)

= (y − zβ0)′M(X)(y − zβ0)− (y − zβ0)′M(X)(y − zβ0)
(y − zβ0)′M(X)(y − zβ0)

where K2 = 1 is the number of restrictions (β = β0). The confidence interval
for β of size α is

Cβ(α) = {β0 : AR(β0) ≤ Fα(1, N − 2)}

and this is adaptive to π2 being ‘small’. There is an article by Nelson & Startz
(1992, EMA) on why the confidence interval takes the shape that it does and
also Stock & Wright (1996, EMA) and Dufour.
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Chapter 4

Stationary Time Series

4.1 Introduction to Time Series

There are three forms of data: time series, cross section and panel. As the
name indicates, the time series {yt}Tt=1 is a sequence of T data points observed
over time, e.g. quarterly GDP from 1970 to 2000, monthly CPI from 2000 to
2010, annual US private consumption expenditure from 1995 to 2005. Cross
sectional data refers to data {x}Ni=1, which varies across units i = 1, . . . , N
such as individuals, firms, industries and countries; for example micro surveys
of firm productivity as measured by units produced per worker, average salary
differences between players of different teams during a given year. Finally, panel
data refers to series {z}N,Ti=1,t=1 where we observe different units or sections i
over time t, so intuitively it is a mix of time series and cross section data where
the cross sectional data is observed over time. For example, panel data could be
annual observations of current account balances across the Eurozone countries
between 2000 and 2005, quarterly real GDP growth across OECD countries
from 1950 to 2000, etc. In the first case, the members of the Eurozone are the
cross section and the time domain is between 2000 and 2005. In the second
example, OECD countries form the cross section and the time series they are
observed for are the quarters between 1950 and 2000. In this chapter, I focus
on time series data, in particular stationary time series data.

Definition 4.1. A time series typically consists of set of observations on a
variable y taken at equally spaced intervals over time. (Harvey, 1993: 1) [46]

Definition 4.2. When several variables are considered together, we have a
multivariate time series. (Harvey, 1993: 5) [46]

Prof Bénétrix will cover multivariate time series. However, I will restrict
attention for this part of the course to univariate (single) time series.

Definition 4.3. A stochastic process is a collection of random variables that
are ordered in time.
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We will consider modeling time series as stochastic processes, i.e. where
each observation can be viewed as following a probabilistic process, i.e. they are
random variables evolving over time according to a particular law of probability.

Definition 4.4. A realisation is a single draw from the process, {yt}.

We defined moments (e.g. mean, variance) of a stochastic process with
respect to the distribution of the random variables that is the time series
y1, . . . , yT . For instance, the first moment (mean) of the process at time t
is given by:

µt = E(yt) t = 1, . . . , T (4.1)

which is the average value of yt over all possible realisations. The variance at
time t is given by:

V ar(yt) = E[(yt − µt)2] t = 1, . . . , T (4.2)

and the covariance between yt and yt−τ is defined by:

Cov(yt, yt−τ ) = E[(yt − µt)(yt−τ − µt−τ )] t = τ + 1, . . . , T (4.3)

With m observations, let y(j)
t denote the jth observation on yt. So, empirically:

µ̂t = 1
m

m∑
j=1

y
(j)
t t = 1, . . . , T

These ‘ensemble’ averages are rare since we only observe a single series of
observations for most time series. Then, we need to impose restrictions on
the data generating process (DGP) in order to conduct meaningful inference
on (4.1)– (4.3). This leads to our discussion of stationarity.

Definition 4.5. The autocovariance function of a stochastic process yt is given
by

E[(yt − µ)(yt−τ − µ)] = γ(τ) τ = 1, 2, . . .

A more advanced treatment of the autocovariance function is as follows.
Given the realisation {y(1)

t }∞t=−∞, let

x(1)
t =


y

(1)
t

y
(1)
t−1
...

y
(1)
t−j


So, each realisation of {yt}∞t=−∞ generates a particular value of xt. We want
the probability distribution of the vector x(i)

t across the realisations i, viz. the
joint distribution of (Yt, Yt−1, . . . , Yt−j).
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Definition 4.6. The jth autocovariance of Yt is

γj,t =
∫ ∞
−∞

∫ ∞
−∞
· · ·
∫ ∞
−∞

(yt − µ)(yt−j − µt−j) (4.4)

×fYt,Yt−1,...,Yt−j (yt, yt−1, . . . , yt−j)dytdyt−1 · · · dyt−j (4.5)
= E(Yt − µt)(Yt−j − µt−j)

Since the of (4.5) is that of a covariance Cov(X,Y ) = E(X−µX)(Y −µY ) –
here of Yt with its lagged self – we use the term ‘autocovariance’. Note that γ0,t,
the 0th autocovariance is the variance. Further, the jth autocovariance, γj,t is
the (1, j+ 1) element of the variance-covariance matrix of the vector xt; hence,
autocovariances are referred to as second moments. The jth autocovariance is
the probability limit of the ensemble average:

γj,t = plim
I−→∞

1
I

I∑
i=1

[Y (i)
t − µt] · [Y (i)

t−j − µt−j ]

Example 4.7. Looking at how to calculate autocovariances, the process in
example one (3.1.5) has zero autocovariances except when j = 0:

γj,t = E(Yt − µ)(Yt−j − µ) = E(εtεt−j) = 0 for j 6= 0

Definition 4.8. A stochastic process is weakly or covariance stationary if for
all t:

E(yt) = µ ∀t (4.6)
E[(yt − µ)2] = σ2

y = γ(0) ∀t (4.7)
E[(yt − µ)(yt−τ − µ)] = γ(τ) ∀t, τ (4.8)

So, weak stationarity simply requires that neither the mean µt nor the
autocovariances γj,t depend on time t.

Example 4.9. The process in the first example is covariance stationary:

E(Yt) = µ

E(Yt − µ)(Yt−j − µ) =
{
σ2 for j = 0
0 for j 6= 0

However, since its mean βt is a function of time, the process in the second
example is not covariance stationary.

Proposition 4.10. If a process is covariance stationary, then γj,t depends only
on j, the length of time separating the observations; γj,t is invariant to t, the
observation date. So, γj = γ−j.
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Proof. Let Yt be a covariance stationary process. By definition

γj = E(Yt − µ)(Yt−j − µ) (4.9)

Replace t with t + j and observe that since Yt is covariance stationary, γj is
the same for all t (does not depend upon t):

γj = E(Yt+j−µ)(Y[t+j]−j−µ) = E(Yt+j−µ)(Yt−µ) = E(Yt−µ)(Yt+j−µ) (4.9)= γ−j

∴ γj = γ−j for all j ∈ Z

Strict stationarity is a stronger condition requiring the joint probability
distribution of a set of r observations at t1, t2, . . . , tr is the same as the joint
probability distribution of a shifted set, observations at t1 + τ, t2 + τ, . . . , tr + τ
for any τ . Let us define this more formally.

Definition 4.11. A process Yt is strictly stationary if for any j1, j2, . . . , jn,
the joint distribution of (Yt, Yt+j1 , Yt+j2 , . . . , Yt+jn) depends only on the in-
tervals separating the dates (j1, j2, . . . , . . . , jn) and not on the date itself (t).
(Hamilton, 1994:46) [43]

When the first two moments of the distribution exist (e.g. Normal dis-
tribution), strict stationarity implies weak stationarity; note that all that we
need to parameterise a multivariate Gaussian distribution are the mean and
the variance. In fact, we only need to know that the second moment is finite.
If the densities we are integrating in the definitions of expectation and jth au-
tocovariance are time invariant, then µt and γj,t will not depend upon time.
Going in the other direction, covariance stationarity does not imply strict sta-
tionarity; and even if the mean and autocovariances do not depend on time,
higher moments (e.g. E(Y 3

t )) may.
Estimates of (4.6)– (4.8) can be found from a single series of observations

via the following formulae:

µ̂ = ȳ = 1
T

T∑
t=1

yt (4.10)

γ̂(0) = c(0) = 1
T

T∑
t=1

(yt − ȳ)2 (4.11)

γ̂(τ) = c(τ) = 1
T

T∑
t=τ+1

(yt − ȳ)(yt−τ − ȳ) τ = 1, 2, 3, . . . (4.12)

Equations (4.10), (4.11) and (4.12) are the sample mean, sample variance and
sample autocovariance, respectively.

An intuitive definition of an ergodic distribution is that such a distribution
requires that observations that are ‘sufficiently’ far apart should have almost no
correlation. For such processes, the above statistics yield consistent estimates.
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We will focus on models where stationarity implies ergodicity.1 Ergodicity is
related to whether time averages

ȳ = 1
T

T∑
t=1

y
(1)
t (4.13)

converge to an ensemble concept E(Yt), for stationary processes.

Definition 4.12. A weakly stationary process {Yt} is ergodic for the mean
if (4.13) converges in probability to E(Yt) as T −→∞, i.e.

plim
T−→∞

ȳ = plim
T−→∞

1
T

T∑
t=1

y
(1)
t = E(Yt)

What we need for a process to be ergodic for the mean is that γj go to zero
sufficiently quickly as j becomes large.

Definition 4.13. A weakly stationary process {Yt} is ergodic for second mo-
ments if

1
T − j

T∑
t=j+1

(Yt − µ)(Yt−j − µ) p−→ γj ∀j

In many cases, stationarity and ergodicity amount to the same require-
ments.

A trivial example of a covariance stationary stochastic process is white
noise:

Definition 4.14. The sequence of random variables εt is a white noise (WN)
process if the sequence is uncorrelated, has constant mean and has constant
variance.

So a WN process {εt}∞t=−∞ is such that its elements have mean zero and
variance σ2, i.e. E(εt) = 0, E(ε2t ) = σ2 and the ε’s are uncorrelated across
time, i.e. E(εtετ ) = 0 for t 6= τ . Occasionally we may want to replace the
assumption E(εtετ ) = 0 for t 6= τ by a stronger condition that the ε’s are
independent across time, viz. εt, ετ are independent for t 6= τ . This second
‘independence’ assumption implies the first ‘uncorrelatedness’ assumption, but
not vice-versa.

Definition 4.15. A process {εt} is called an independent white noise process
if

E(εt) = 0
E(ε2t ) = σ2

E(εtετ ) = 0 ∀t 6= τ

εt ⊥⊥ ετ ∀t 6= τ

1Harvey provides an example of a non-ergodic process, viz. the cyclical process in equa-
tion (6.3.1) in his book.
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Definition 4.16. A process {Yt} is Gaussian if the joint density

fYt,Yt+j1 ,...,Yt+jn
(yt, yt+j1 , . . . , yt+jn)

is Gaussian for any j1, j2, . . . , jn. (Hamilton, 1994:46) [43]

Consider the case when we have T observations in a sample from a random
variable Yt, {yt}Tt=1.

Definition 4.17. Let {ε}Tt=1 be a collection of T independently and identically
distributed (iid) variables such that

εt ∼ N(0, σ2)

We refer to this sample of size T as originating from a Gaussian white noise
process since the random variable is generated from a Normal (Gaussian) dis-
tribution.

Example 4.18. To see an example of a process that is stationary but not er-
godic, suppose that the ith realisation {y(i)

t }∞t=−∞ is generated from a N(0, λ2)
distribution

Y
(i)
t = µ(i) + εt (4.14)

where µ(i) denotes the mean of the ith realisation and {εt} is Gaussian WN
independent of µ(i) with mean 0 and variance σ2. Observe that

µt = E(µ(i)) + E(εt) = 0
γ0,t = E(µ(i) + εt)2 = λ2 + σ2

γj,t = E(µ(i) + εt)(µ(i) + εt−j) = λ2 for j 6= 0

So, the process of (4.14) is covariance stationary.2 Also note that the time
average

1
T

T∑
t=1

Y
(i)
t = 1

T

T∑
t=1

(µ(i) + εt) = µ(i) + 1
T

T∑
t=1

εt

converges to µ(i) instead of zero, the mean of Yt.

Consider I realisations from the random variable Yt for yt, i.e. {yit}Ii=1.
The unconditional density fYt(yt) for the Gaussian WN process is given by

fYt(yt) = 1√
2πσ

exp
(
−y2

t

2σ2

)
Observe that since WN variables within the sequence are uncorrelated:

E(εtεt−τ ) =
{
σ2 τ = 0
0 τ 6= 0

2It does not satisfy the sufficient condition
∑∞

j=0 |γj | < ∞ for ergodicity of the mean;
see Hamilton chapter 7.
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Definition 4.19. We call the series Yt a martingale when Yt follows a martin-
gale process, i.e. if E(Yt+1|Ft) = Yt, where Ft ⊆ Ft+1 is the time t information
set.

Definition 4.20. Let Yt follows a martingale process E(Yt+1|Ft) = 0. {Yt} is
called a martingale difference (MD) sequence or ‘mds’.

Definition 4.21. The expectation of the ith observation of a time series is the
mean of the probability distribution (if it exists):

E(Yt) =
∫ ∞
−∞

ytfYt(yt)dyt

and can be expressed as the probability limit of the ‘ensemble’ average:

E(Yt) = plim
I−→∞

1
I

I∑
i=1

Y
(i)
t

Example 4.22. Let
Yt = µ+ εt ∀t

where εt is Gaussian WN. Then

E(Yt) = µ+ E(εt) = µ

Example 4.23. Let Yt be a time trend plus Gaussian WN:

Yt = βt+ ε

=⇒ E(Yt) = βt

Definition 4.24. The unconditional mean of Yt is the expectation E(Yt) and
denoted µt, i.e.

E(Yt) = µt

Remark 4.25. Note that this definition permits the general case where the
mean can be a function of the time t of the observation. The first example
has Yt not to be a function of time while the second example has Yt to be a
function of time.

Definition 4.26. The variance of a random variable Yt is given by

γ0,t = E(Yt − µt)2 =
∫ ∞
−∞

(yt − µt)2fYt(yt)dyt

where γ0,t denotes the variance.

Example 4.27 (Example 4.23 continued). For example 4.23, the variance is

γ0,t = E(Yt − βt)2 = E(ε2t ) = σ2
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The time domain properties of stationary stochastic processes may be sum-
marised by plotting the autocovariance function γ(τ) against τ .

Remark 4.28. It is unnecessary to also plot over negative values of τ . This
follows from the observation that γ(τ) = γ(−τ).

Definition 4.29. Autocorrelations are a standardisation of the autocovariance
function obtained by dividing by the variance:

ρ(τ) = γ(τ)
γ(0) τ = 0,±1,±2, . . .

The autocorrelation function is simply a plot of autocorrelations (ρ) against
non-negative values of τ .

Remark 4.30. Again, observe that we do not need to also plot ρ against
negative values of τ since γ(τ) = γ(−τ) =⇒ ρ(τ) = ρ(−τ). Note further that
by definition ρ(0) = 1.

While the autocovariance and autocorrelation functions provide the same
information and are of the identical shape, typically we plot the autocorrela-
tion function because it is dimensionless. As for the case with the theoretical
autocovariance, the sample covariance may be standardised similarly.

Definition 4.31. The sample autocorrelations are given by:

r(τ) = c(τ)
c(0) τ = 1, 2, . . .

The sample autocorrelation function or correlogram is a plot of r(τ) against
the non-negative values of τ .

I will return to discussing autocorrelation functions and partial autocor-
relation functions more deeply in section 4.3, where the latter will then be
defined.

Definition 4.32. The lag operator is defined as:

Lyt = yt−1 (4.15)

From (4.15), recursion yields

Lτyt = yt−τ τ = 1, 2, 3, . . .

Note that L0yt = yt.

Definition 4.33. The forward or lead operator is defined as

F = L−1
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Definition 4.34. The first difference operator is defined as

∆ = 1− L

Usual algebraic manipulations can be carried out on all these operators.
Many stochastic processes can be expressed via infinite lags withing moving
averages.

Definition 4.35. An indeterministic process or a linear process is any model
that can be represented as

yt =
∞∑
j=0

ψjεt−j (4.16)

where ψ0, ψ1, ψ2, . . . are parameters.

Remark 4.36. Note that the model will only be ‘linear’ if the εt’s are inde-
pendent, not just simply uncorrelated.

In order for the process to have finite variance, we need to have the condition

∞∑
j=0

ψ2
j <∞

or sometimes the stronger condition

∞∑
j=0
|ψj | <∞

Theorem 4.37 (Wold decomposition theorem). 3 Suppose Yt is generated
by a linearly indeterministic covariance stationary process. Then Yt can be
represented as

Yt = εt + c1εt−1 + c2εt−2 + · · ·

where ε is WN with variance σ2
ε ,
∑∞
i=1 c

2
i <∞ and ε = Yt−Proj(Yt|lags of YT )

so that εt is ‘fundamental’ because ε is given by a linear forecasting rule where
we observe the data.

Linear processes are stationary. So as mentioned above, their properties
are well summarised by the autocovariance function and these properties may
be approximated to any level of accuracy one wishes by a model from the class
of autoregressive-moving average (ARMA) processes, which we will define and
discuss in section 4.2.3. For now note that an ARMA(p, q) process:

yt = φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q (4.17)

3See for example Brockwell & Davis (1991) [11].
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can be written more concisely via associated polynomials in the lag operator.
Define

φ(L) = 1− φ1L− · · · − φpLp (4.18)
θ(L) = 1 + θ1L+ · · ·+ θqL

q (4.19)

so (4.17) can be expressed neatly as

φ(L)yt = θ(L)εt (4.20)

Definition 4.38 (Linear Filter). Let {cj} be a sequence of constants and let

c(L) = c−rL
−r + c−r+1L

−r+1 + · · ·+ c0 + c1L+ · · ·+ csL
s

be a polynomial in L. Note that Xt = c(L)Yt =
∑s
j=−r cjYt−j is a moving

average of Yt. Sometimes, we can refer to c(L) as a linear filter and X is called
a filtered version of Y .

4.2 AR, MA, ARMA, ADL models

This section explores ARMA models in addition to ADL models. For ARMA
models, I am following Harvey (1993) [46] in assuming without loss of generality
(WLOG) that the processes have mean zero, i.e. µ = 0.

4.2.1 Autoregressive (AR) models

Definition 4.39. An autoregressive process of order p (AR(p)) is defined by

yt = µ+ φ1yt−1 + · · ·+ φpyt−p + εt t = 1, . . . , T (4.21)

denoted by yt ∼ AR(p).

AR processes have been popular since they have a natural interpretation
and are easier to estimate than moving average processes (see section 4.2.2) or
mixed processes (see section 4.2.3).

4.2.1.1 Conditions for stationarity – AR(1)

Letting p = 1, AR(1) is

yt = φyt−1 + εt t = 1, . . . , T (4.22)

Through repeated substitution, it can be shown that:

yt =
J−1∑
j=0

φjεt−j + φJyt−J (4.23)
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The RHS of (4.23) consists of an MA(J-1) of the WN variable and a term
depending on the value of yt−J . Treating yt−J as a fixed number and taking
expectations of (4.23), we get that

E(yt) = E

J−1∑
j=0

φjεt−j

+ E(φJyt−J) = φJyt−J

Remark 4.40. Note that when |φ| ≥ 1, E(yt) depends on starting value yt−J
so (4.23) contains a deterministic component, i.e. a knowledge of yt−J allows
us to make a non-trivial prediction for future values of the series, irrespective
of the horizon. Else when |φ| < 1, as J becomes large, the deterministic
component becomes negligible:

lim
J−→∞

φJyt−J = 0

and hence we can regard the process as having started at some point in the
distant past. So we can write:

yt =
∞∑
j=0

φjεt−j t = 1, . . . , T (4.24)

Comparing (4.24) with (4.16), we can see that when |φ| < 1, an AR(1)
model is indeterministic. This is because:

∞∑
j=0

φ2j = 1
1− φ2

Finally, note that while E(yt) = 0 for all t,

γ(0) = E(y2
t ) = E

 ∞∑
j=0

φjεt−j

2

=
∞∑
j=0

φ2jE(ε2t−j)

= σ2
∞∑
j=0

φ2j = σ2

1− φ2 (4.25)

4.2.1.2 Conditions for stationarity – AR(2)

The second order autoregressive process, AR(2) is given by

yt = φ1yt−1 + φ2yt−2 + εt t = 1, . . . , T (4.26)

Similar to the AR(1), we can decompose the AR(2) model into a deterministic
part – it now depends on a pair of starting values – and a stochastic part.
Again, if the process is stationary, the influence of the starting values (the
deterministic part) is negligible once the starting point is in the distant past.
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To explore the deterministic part, first suppress the disturbance term ε
in (4.26) to get the homogeneous difference equation:

ȳt − φ1ȳt−1 − φ2ȳt−2 = 0 (4.27)

where ȳ refers to the mean of the process and the solution depends on the roots
of its characteristic equation:

x2 − φ1x− φ2 = 0 (4.28)

It can be shown that the roots m1,m2 are given by

m1,m2 = φ1 ±
√
φ2

1 + 4φ2

2 (4.29)

Three cases arise, which depend on the sign of the term under the square root:
(i) positive, (ii) zero or (iii) negative. In the first case, when φ2

1 + 4φ2 > 0 the
roots are both real and the solution is given by

ȳt = k1m
J
1 + k2m

J
2

where k1 and k2 are constants and depend on the starting values ȳt−J and
ȳt−J+1. If |m1| < 1 ∧ |m2| < 1, ȳt is close to zero when J is large. In the
second case, when φ2

1 + 4φ2 = 0 so the roots are both real and equal, the
solution (a different form) implies that the condition necessary for ȳt to be
negligible is that the root – remember they are both equal – is less than one.
In the third case, when φ2

1 + 4φ2 < 0 the roots are complex, in particular, they
form a pair of complex conjugates, i.e. m3 = a + ib and m4 = a − ib. The
solution is in the same form as the first case except that it can be rewritten:

ȳt = k3r
J cos (λJ + k4)

where k3 and k4 are constants and depend on the starting values ȳt−J and
ȳt−J+1, r is the modulus of the roots (i.e. r =

√
a2 + b2 when m = a+ ib) and

λ, which is measured in radians is given by:4

λ = tan−1
[

Im(m1)
Re(m1)

]
= tan−1

[
(−φ2

1 − 4φ2) 1
2

φ1

]

= cos−1
[

φ1

2
√
−φ2

]
ȳt has a cyclical time path and damped if |r| < 1; also, when J is large, ȳt is
negligible.

4Note that the modulus of a complex number is the same as the modulus of the complex
conjugate of the same complex number.
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When the roots of (4.28) are less than one in absolute value, the determin-
istic component in the AR(2) goes to zero as J tends to infinity and we are left
with a linear process (an infinite MA process):

yt =
∞∑
j=0

ψjεt−j (4.30)

Let us derive the coefficients in this process. First define the following associ-
ated lag polynomials:

φ(L) = 1− φ1L− φ2L
2

ψ(L) = ψ0 + ψ1L+ ψ2L
2 + · · ·+ ψτL

τ + · · · (4.31)
(4.26) and (4.30) may be expressed as

yt = φ−1(L)εt
yt = ψ(L)εt

From comparing these two equations, we can see that

φ(L)ψ(L) = 1 (4.32)

⇐⇒ (1− φ1L− φ2L
2)(ψ0 + ψ1L+ ψ2L

2 + · · · ) = 1

⇐⇒ ψ0 + (ψ1 − φ1ψ0)L+ (ψ2 − φ1ψ1 − φ2ψ0)L2

+ (ψ3 − φ1ψ2 − φ2ψ1)L3 + · · · = 1 (4.33)

Observe that since lags of yt do not enter on the right hand side of (4.33), i.e.
only L0 = 1 since L0yt = yt, the coefficients of L,L2, L3, . . . on the right hand
side of (4.33) are all identically zero and so they will be all identically zero on
the left hand side as well. Therefore:

ψ0 = 1

ψ1 − φ1 = 0
ψj − φ1ψj−1 − φ2ψj−2 = 0 j ≥ 2 (4.34)

The roots of (4.34) are given by (4.29). If they both lie within the unit circle,
i.e. are both less than one in absolute value, then ψj

j−→∞−→ 0. ICBST the
rate of convergence is sufficient for the process to have finite variance and
that the condition that the roots of (4.28) have modulus less than one is a
sufficient condition for stationarity. ICBST the conditions for stationarity are
the following:5

φ1 + φ2 < 1
−φ1 + φ2 < 1

φ2 > −1

5See Goldberg, 1958: 171-2 [39].
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We know that the roots of (4.28) will be complex when the term under the
square root is negative – a necessary condition is φ2 < 0. These conditions can
be summarised graphically; see figure 2.2 and the discussion in Harvey (1993:
19-20) [46].

4.2.1.3 Conditions for stationarity – AR(p)

An AR(p) model (4.21) is stationary when the roots of the characteristic equa-
tion

xp − φ1x
p−1 − · · · − φp = 0 (4.35)

are all less than one in absolute value. Alternatively (and equivalently), the
associated lag polynomial equation

1− φ1L− · · · − φpLp = 0 (4.36)

has the stationarity condition that its roots should all be greater than one in
absolute value. With (4.35), the stationarity condition requires the roots to lie
within the unit circle, while the stationarity condition for (4.36) requires the
roots to lie outside the unit circle since (4.36) is a similar formula except with
1
L instead of x and multiplied by Lp.

4.2.1.4 Autocovariance & autocorrelation functions

For |φ| < 1, AR(1) model (4.22) has zero mean and variance given by (4.25).
Let us derive the autocovariance at lag τ . We will express yt as a linear
combination of εt, εt−1, . . . , εt−τ+1 by setting J = τ in (4.23) so

γ(τ) = E(ytyt−1) = E

φryt−τ +
τ−1∑
j=0

φjεt−j

 yt−τ


As εt, . . . , εt−τ+1 are each uncorrelated with yt−τ , this reduces to

γ(τ) = φrE(y2
t−τ ) = φrγ(0) τ = 1, 2, . . . (4.37)

Since the autocovariances γ(τ) only depend on τ , we can see that the process is
stationary. On the other hand, if we started by assuming stationarity, then we
could more directly multiply both sides of (4.23) by yt−τ and take expectations
to get

E(ytyt−τ ) = φE(yt−1yt−τ ) + E(εtyt−τ ) τ = 0, 1, 2, . . . (4.38)

Note that for a stationary process, E(yt−1yt−τ ) = E(ytyt−τ+1) = γ(t− 1) and
E(εtyt−τ ) = 0 for τ > 0 since εt is uncorrelated with lagged values of yt.

∴ γ(τ) = φγ(τ − 1) τ = 1, 2, . . .

which is a first-order difference equation, the solution of which is given by (4.37).
Similarly, one can derive the variance using the fact that E(εtyt) = σ2.
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The autocorrelation for an AR(1) processes has the form

ρ(τ) = φτ τ = 0, 1, 2, . . .

When φ > 0, the ACF will exponentially decline smoothly as in figure 2.3 (a)
in Harvey (1993) [46]; the series is ‘slowly changing’, i.e. differences between
successive values are small. When φ < 0, the ACF will exponentially decline
but oscillate between negative and positive values with the starting value being
negative as in figure 2.3 (b) in Harvey (1993) [46]; an irregular pattern is created
because adjacent observations are negatively correlated.

One can derive the variance and autocovariance of the AR(2) process through
a generalisation of (4.38) by multiplying (4.26) by yt−τ and taking expecta-
tions:

E(ytyt−τ ) = φ1E(yt−1yt−τ ) + φ2E(yt−2yt−τ ) + E(εtyt−τ ) (4.39)

Note: E(εtyt−τ ) = 0 . . .when τ > 0
∴ γ(τ) = φ1γ(τ − 1) + φ2γ(τ − 2) τ = 1, 2, . . . (4.40)

We get the second-order difference equation for the ACF by dividing (4.40) by
γ(0):

ρ(τ) = φ1ρ(τ − 1) + φ2ρ(τ − 2) τ = 1, 2, . . . (4.41)
Let τ = 1 and observe that since the ACF is symmetric, ρ(−1) = ρ(1) so:

ρ(1) = φ1 + φ2ρ(1)

and the starting values for the ACF are

ρ(0) = 1

ρ(1) = φ1

1− φ2

Note that since (4.41) has the same form as the homogeneous equation (4.27)
its solution will exhibit the same patterns as the deterministic component of
the AR(2) process. Specifically, for complex roots, it may display damped
cyclical behaviour as in figure 2.4 in Harvey (1993) [46].

Regarding the variance of the AR(2) process, we can obtain this from (4.39)
by setting τ = 0. Now the last term is non-zero since

E(εtyt) = E[εt(φ1yt−1 + φ2yt−2 + εt)]
= φ1E(εtyt−1) + φ2E(εtyt−2) + E(ε2t )
= 0 + 0 + σ2 = σ2

∴ γ(0) = φ1γ(1) + φ2γ(2) + σ2

⇐⇒ γ(0) = σ2

1− ρ(1)φ1 − ρ(2)φ2

⇐⇒ γ(0) =
(

1− φ2

1 + φ2

)
σ2

[(1− φ2)2 − φ2
1]
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where the last line follows by noting that ρ(1) = ρ1/(1 − ρ2) and ρ(2) =
φ1ρ(1) + φ2 and so we have γ(0) in terms of φ1 and φ2.

The time domain properties of any AR process may be derived using the
same techniques. For instance, multiplying (4.21) by yt−τ , taking expectations
and dividing by γ(0) yields the pth order difference equation

ρtau = φ1ρ(τ − 1) + · · ·+ φpρ(τ − p) τ = 1, 2, . . . (4.42)

When τ = 0, it can be shown that the variance is:

γ(0) = σ2

1− ρ(1)φ1 − · · · − ρ(p)φp

With any stationary AR(p) process, the ACF ‘damps down’ in that ρ(τ) −→
0 as τ −→∞. Its actual behaviour, e.g. regarding cyclical movements, depends
upon the roots of the characteristic equation (4.35).

4.2.2 Moving Average (MA) models

Definition 4.41. A moving average process of order q (MA(q)) is defined by

yt = εt + θ1εt−1 + · · ·+ θqεt−q t = 1, . . . , T (4.43)

denoted by yt ∼ MA(q).

Remark 4.42. Every finite MA process (q <∞) is stationary.

4.2.2.1 Autocovariance and autocorrelation functions

From (4.43)
E(yt) = E(εt + θ1εt−1 + · · ·+ θqεt−q) = 0 ∀t

γ(0) = E(y2
t ) = (1 + θ2

1 + · · ·+ θ2
q)σ2

γ(τ) =
{

(θτ + θ1θτ+1 + · · ·+ θq−τθq)σ2 τ = 1, . . . , q
0 τ > q

(4.44)

The process can be seen to be stationary since the mean, variance and covari-
ances are independent of t. The fact that autocovariances at lags greater than
q are all zero means that it is easy to identify an MA(q) process using the
autocovariance function or the autocorrelation function, since they will each
have a distinct ‘cut-off’ at lag length τ = q. This is in sharp contrast to the
autocovariance function of an AR process, which slowly decays towards zero.

Example 4.43 (MA(1)). The MA(1) process is defined by

yt = εt + θεt−1 t = 1, . . . , T
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where εt is a sequence of independent random variables from a distribution
with zero mean and constant variance and where θ is a parameter. So,

µ = E(εt) + θE(εt−1) = 0

and we have that the autocovariance function at lag 0 (i.e. variance) is

γ(0) = E[(εt + θεt−1)(εt + θεt−1)]
= E(ε2t ) + θ2E(ε2t−1) + 2θE(εtεt−1)
= (1 + θ2)σ2

The autocovariance function at lag 1 is

γ(1) = E[(εt + θεt−1)(εt−1 + θεt−2)]
= E(εtεt−1) + θE(ε2t−1) + θE(εtεt−2) + θ2E(εt−1εt−2)
= θE(ε2t−1)
= θσ2

The autocovariance function for any lag τ ≥ 2 is γ(τ) = 0. We see that the
process is stationary since the mean, variance and covariance are independent
of t. The autocorrelation function is:

ρ(1) = θ

1 + θ2 (4.45)

4.2.2.2 Invertibility

Through repeated substitution, the MA(1) process can be expressed as

yt = θyt−1 − θ2yt−2 + · · · − (−θ)Jyt−J + εt − (−θ)J+1εt−J−1 (4.46)

When |θ| < 1, yt does not depend on a shock to the system in the distant past.
Letting J −→ ∞, the final term in (4.46) disappears and yt can be expressed
as an AR(∞) with declining weights:

yt = −
∞∑
j=1

(−θ)jyt−j + εt

Note that an MA(1) model with |θ| > 1 is still stationary, even though it
is not invertible; however, its ACF may be reproduced precisely by an in-
vertible process with parameter 1

θ , which can be seen from substituting into
equation (4.45):

ρ(1) =
1
θ

1 +
( 1
θ

)2 = θ

1 + θ2
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Relating to identification, other than when |θ| = 1, an ACF will be the
same for two processes – one invertible and one non-invertible. We should
restrict attention to invertible processes in order to overcome the problem of
identifiability. Furthermore, when |θ| = 1, an MA(1) process may not be
uniquely identified from the ACF.

Regarding invertibility for higher order MA processes, necessary conditions
relate to the MA polynomial equation (4.19), requiring roots of θ(L) = 0 to
lie outside the unit circle. Note for MA(1), 1 + θL = 0 implies L = − 1

θ so
|θ| < 1 ⇐⇒ |L| > 1.

4.2.3 Autoregressive Moving Average (ARMA) models

Definition 4.44. An autoregressive-moving average process of order (p,q) is
defined as

yt = µ+ φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q

denoted by yt ∼ ARMA(p,q).

AR(p) and MA(q) are special cases of ARMA(p,q) where q = 0 and p = 0,
respectively. By a ‘mixed process’, we mean that (p, q) >> 0.

4.2.3.1 Stationarity and invertibility

Stationarity of mixed processes depends entirely on the autoregressive compo-
nent. Specifically, the roots of φ(L) must all be greater than one in absolute
value. Invertibility of mixed processes is completely determined by the moving
average part and the condition is exactly the same as for the MA(q) process,
viz. the roots of θ(L) = 0 must lie outside the unit circle. Justification for
why stationarity for mixed processes is determined solely by the autoregres-
sive component is most apparent when we consider the method of expressing a
mixed process as an infinite moving average. The simplest example of a mixed
process is the ARMA(1,1):

yt = φyt−1 + εt + θεt−1 t = 1, . . . , T (4.47)

and we can substitute repeatedly for yt as in (4.23) or we can re-express (4.47)
as

(1− φL)yt = (1 + θL)εt

⇐⇒ yt = εt
1− φL + θεt−1

1− φL
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If |L| ≤ 1, then when |φ| < 1

yt =
∞∑
j=0

(φL)jεj + θ

∞∑
j=0

(φL)jεt−1

=
∞∑
j=0

φjεt−j + θ

∞∑
j=0

φjεt−j−1

= εt +
∞∑
j=1

(θφj−1 + φj)εt−j

Note that when θ = 0, the above is the same as (4.24) and since |φ| < 1, the
weights in the above equation decline rapidly enough for the process to have
finite variance and for the existence of autocovariances.

We may derive the infinite MA representation of an ARMA process when
p > 1 similarly by factorising φ(L) and expanding φ−1(L)θ(L) by partial frac-
tions. More conveniently, we may equate the coefficients on the powers of L
in

θ(L) = φ(L)ψ(L) (4.48)
NOTE: θ(L) and φ(L) are polynomials defined in (4.18)- (4.19). ψ(L) is the
infinite MA process defined in (4.31) and (4.48) is a generalisation of (4.32) used
to obtain MA coefficients in the AR(2) case. Expanding and rearranging (4.48)
and matching coefficients as in the AR(2) case above, it can be shown that

ψ0 = 1

ψj = θj +
min j,p∑
i=1

φiψj−i j = 1, . . . , q

ψj =
min j,p∑
i=1

φiψj−i j > q (4.49)

When j ≥ max (p, q + 1), difference equation (4.49) determines the ψj ’s and
the starting values are given by the previous p values of ψj .

Example 4.45. As previously demonstrated, for the AR(2) model the MA
coefficients are determined by the difference equation (4.34) for j ≥ 2 with
starting values ψ0 = 1 and ψ1 = φ1.

Example 4.46. In the ARMA(1,1) model (4.47) the ψj ’s are defined from the
difference equation

ψj = φψj−1 j ≥ 2
and the starting value is given by

ψ1 = θ + φψ0 = θ + φ

We may use similar techniques to derive the infinite AR representation of
an invertible ARMA process.
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4.2.3.2 Autocovariance and autocorrelation functions

Time domain properties of ARMA, or mixed processes are related to some of
those belonging to AR and MA processes. Clearly, multiplying an ARMA(1,1),
equation (4.47) by yt−τ and taking expectations yields

γ(τ) = φγ(τ − 1) + E(εtyt−τ ) + θE(εt−1yt−τ ) τ = 0, 1, 2, . . .

It can be shown that

E(εtyt−τ ) =
{
σ2 τ = 0
0 τ ≥ 1

E(εt−1yt−τ ) =


φσ2 + θσ2 τ = 0
σ2 τ = 1
0 τ > 1

Thus, the autocovariance function is given by

γ(0) = φγ(1) + σ2 + θφσ2 + θ2σ2

γ(1) = φγ(0) + θσ2

γ(τ) = φγ(τ − 1) τ = 2, 3, . . .

Plugging γ(1) from the second equation into the first yields

γ(0) = 1 + θ2 + 2φθ
1− φ2 σ2 (4.50)

∴ γ(1) = (1 + φθ)(φ+ θ)
1− φ2 σ2 (4.51)

ACF can be found by dividing (4.51) and γ(τ) by (4.51):

ρ(1) = (1 + φθ)(φ+ θ)
1 + θ+2φθ (4.52)

ρ(τ) = φρ(τ − 1) τ = 2, 3, . . . (4.53)

Looking at the ACF, when τ > 1, its behaviour is determined by the first-
order difference equation (4.53), so autocorrelations display exponential decay
and exhibit exponential decay with oscillatory behaviour when φ < 0. This is
exactly like the AR(1) except that instead of a starting value for the difference
equation in the AR(1) model of ρ(0) = 1, with an ARMA(1,1) model, the
starting value is ρ(1). From (4.52), ρ(1) is a function of both φ and θ and
sgn ρ(1) depends on sgn (φ+ θ).

Example 4.47. Let us illustrate the type of pattern an ACF may display.
Let φ = 0.3 and θ = 0.9, so ρ(1) = 0.649 and the ACF declines exponentially
(see figure 2.5 (a) on page 28 of Harvey). Alternatively, let the MA parameter
θ = −0.9, so ρ(1) = −0.345 and the ACF declines exponentially but from a
negative starting value (see figure 2.5 (b) on page 28 of Harvey). There are six
different patterns for the ACF of an ARMA(1,1), which depend on θ and φ.
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Remark 4.48. For higher order ARMA, properties can be derived similarly
and the ACF displays the pattern of having the first q autocorrelations de-
pending on both the AR and the MA parameters. Higher order autocorre-
lations are given by a pth order difference equation of the form (4.42) with
ρ(q), ρ(q − 1), . . . , ρ(q − p+ 1) as starting values.

4.2.3.3 Autocovariance generating function

Definition 4.49. The autocovariance generating function (ACGF) of a sta-
tionary process is defined as the polynomial in the lag operator g(L) such that

g(L) =
∞∑

τ=−∞
γ(τ)Lτ (4.54)

where the coefficient on Lj corresponds to the autocovariance at lag τ .

Example 4.50. An MA(∞) can be written in terms of a polynomial in the
lag operator ψ(L) as

g(L) = |ψ(L)|2σ2 = ψ(L)ψ(L−1)σ2 (4.55)

Proof. Consider (4.44) when q −→∞. With the obvious change of notation:

γ(τ) = σ2
∞∑
j=0

ψjψj+τ

Plugging this into (4.54) and noting that ψj = 0 for j < 0 yields

g(L) = σ2
∞∑

τ=−∞

∞∑
j=0

ψjψj+τL
τ = σ2

∞∑
j=0

∞∑
τ=−j

ψjψj+τL
τ

Making the change of variable j + τ = h (hence τ = h− j):

g(L) = σ2
∞∑

j=−∞

∞∑
h=0

ψjψhL
h−j = σ2

∞∑
h=0

ψhL
h
∞∑
j=0

ψjL
−j

Following from (4.5), for an ARMA process:

g(L) = |θ(L)|2

|φ(L)|2σ
2 = θ(L)θ(L−1)

φ(L)φ(L−1)σ
2

Example 4.51. For an MA(1):

g(L) = (1 + θL)(1 + θL−1)σ2

= (1 + θ2)σ2 + σ2θL+ σ2θL−1

= γ(0) + γ(1)L+ γ(−1)L−1

The autocovariances are as in example 4.43
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4.2.3.4 Common factors

Definition 4.52. If AR and MA polynomials in (4.20) have a root that is the
same, then we say that they have a common factor .

With a common factor, we are dealing with a model is over-parameterised
because we may construct a model with the same properties via reducing p and
q both by one. The model is not identifiable.

Example 4.53. Consider the ARMA(2,1) model

yt = 0.2yt−1 + 0.15yt−2 + εt + 0.3εt−1 (4.56)

where the AR polynomial may be factorised as follows:

(1− 0.2L− 0.15L2) = (1− 0.5L)(1 + 0.3L)

∴ yt = φ−1(L)θ(L)εt = (1 + 0.3L)
(1− 0.5L)(1 + 0.3L)εt

and from this, we can see that (4.54) has the same MA representation as the
AR(1) model

yt = 0.5yt−1 + εt (4.57)

So (4.56) and (4.57) will have the same autocovariance functions and there-
fore (4.56) is overparameterised.

4.2.4 Autoregressive Distributed Lag (ADL) models

A general form for dynamic regression is:6

yt = α+
∞∑
i=0

βixt−i + εt

When we believe that the duration of the lagged effects will be very long, we
can look at infinite lag models allowing these effects to gradually fade over
time. However, more typically we have models where changes in x do not have
any influence after a certain cut of point usually after only a small number of
periods; in this case we are looking at finite lag models. As opposed to the
classical marginal effect that looks at the response of y to an immediate once
off change in x, in a dynamic model, we look at a one-time change in xt on the
equilibrium of yt. We call β0 the impact or short-run multiplier and we call the
accumulated effect τ periods later of an impulse at time t the cumulated effect,
i.e. βτ =

∑τ
i=0 βt. Finally, we call β =

∑∞
i=0 βt the equilibrium or long-run

6When we sum from i = 0 to p, we need to choose lag length p. This can be done by the
adjusted R2, Akaike information criterion or the Schwarz information criterion, for example.
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multiplier . We usually define the lag weights as wi = βi∑∞
j=0

βj
so
∑∞
i=0 wi = 1

and rewrite the model as:

yt = α+ β

∞∑
i=0

wixt−i + εt

Note that to characterise the period of adjustment to a new equilibrium, we
can use the following two statistics: the median lag, which is the smallest q∗
such that

∑q∗
i=0 wi ≥ 0.5 and the mean lag, which is

∑∞
i=0 iwi.7

To repeat the definition of a lag operator , remember that Lxt = xt−1.
Recall that a polynomial in the lag operator is:

A(L) = 1 + aL+ (aL)2 + (aL)3 + · · · =
∞∑
i=0

(aL)i

Note that if |γ| < 1 the distributed lag model in the form

yt = α+ β

∞∑
i=0

γiLixt + εt

can be written as
yt = α+ β(1− γL)−1xt + εt

which is called the moving average or distributed lag form. Multiplying by
(1− γL) and collecting terms yields the autoregressive form:

yt = α(1− γ) + βxt + γyt−1 + (1− γL)εt

Looking at infinite lag models, one case is such that we weigh the most
recent past greater than the influence of past observations – the latter will fade
over time. We would use the geometric lag model in this case:

yt = α+ β

∞∑
i=0

(1− λ)λixt−i + εt 0 < λ < 1

= α+ βB(L)xt + εt

where
B(L) = (1− λ)(1 + λL+ λ2L2 + λ3L3 + · · · ) = 1− λ

1− λL
Note that the lag coefficients are βt = β(1 − λ)λi and that while the model
incorporates infinite lags, it only assigns arbitrarily small weights to the distant
past, which decline geometrically, i.e. wi = (1−λ)λi, 0 ≤ wi < 1. In this case,
the mean lag is:

w̄ = B′(1)
B(1) = λ

1− λ
7These results my be meaningless if the lag coefficients don’t have the same signs; some-

times this is an indicator of model misspecification.
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and the median lag is p∗ such that
∑p∗−1
i=0 wi = 0.5, so

p∗ = ln 0.5
lnλ − 1

The impact multiplier will be β(1 − λ) and the long-run multiplier will be
β
∑∞
i=0 (1− λ)λi = β.

One issue with finite lag and geometric lag models is that they both impose
strong assumptions – and perhaps these assumptions are incorrect too – on
the lagged response of the dependent variable with respect to independent
variables.

Definition 4.54. An autoregressive distributed lag (ADL) model is defined by

yt = µ+
P∑
i=1

γiyt−i +
r∑
j=0

βjxt−j + δwt + εt (4.58)

where in the simple case, εt is serially uncorrelated and homoscedastic (can be
relaxed).

The ADL is a general ‘compromise’ that permits the study of interesting
methodological issues and (4.58) may be more neatly written as

C(L)yt = µ+B(L)xt + δwt + εt

where

C(L) = 1− γ1L− γ2L
2 − · · · − γpLp

B(L) = β0 + β1L+ β2L
2 + · · ·+ βrL

r

This is an ADL(p,r). The partial adjustment model is a special case of the ADL,
equivalently ADL(1,0). Other examples are the model of autocorrelation, which
is an ADL(1,1) with β1 = −γ1β0 and the classical regression model, which is
ADL(0,0).

4.2.4.1 Estimation

Apart from the stochastic variables on the right-hand side, ARDL is a linear
model with classical disturbances so OLS will be efficient. Conventional tests
will be asymptotically valid; hence, for testing linear restrictions we can use
Wald statistics though the F statistic is better for finite samples due to its more
conservative critical values. However, when C(1) = 0, the model is inestimable;
in distributed lag term, look at µ

C(1) . Similarly, if
∑
i γi = 1, the stochastic

difference equation is unstable and further problems arise; we can test this
specification. As a concrete example, consider ARDL(1,0) when B(L) = 0:

yt = µ+ γyt−1 + εt
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When γ = 1, we have a random walk with drift model:

yt = µ+ yt−1 + εt

Starting time series at time t = 1:

yt = tµ+
∑
s

εs = tµ+ vt

As the conditional mean increases without limit, the unconditional mean does
not exist. The conditional mean of vt is zero but its conditional variance is
tσ2 – this illustrates heteroscedasticity. If we consider the OLS estimator of µ,
m = (t′y)/(t′t) where t = [1, 2, . . . , T ], then we have that

E[m] = µ+ E[(t′t−1(t′v)] = µ

However, we also have that

V ar[m] =
σ2∑T

t=1 t
3(∑T

t=1 t
2
) = O(T 4)

[O(T 3)]2 = O

(
1
T 2

)

Note that the variance is an order of magnitude smaller than usual than usual,
so we have a stronger result than that of m being mean square consistent,
viz. m is mean square superconsistent. So, we cannot use the tests whose
distributions build on the distribution of

√
T (m− µ) since the variance of this

normalised statistic will converge to zero. We can still test the hypothesis that
γ = 1 and use the same tests, but now we need to use different critical values.8

4.2.4.2 Lag weights

Definition 4.55. The distributed lag form of the ARDL model is called a
rational lag model:

yt = µ

C(L) + B(L)
C(L)xt + 1

C(L)δwt + 1
C(L)εt

= µ

1− γ1 − · · · − γp
+
∞∑
j=0

αjxt−j + δ

∞∑
l=0

θlwt−1 +
∞∑
l=0

θlεt−l

This model allows us to approximate very general lag structures, basically
producing any shape we desire for the lag distribution with relatively few pa-
rameters. The lag coefficients on the x variables are individual terms in the ra-
tio of polynomials appearing in distributed lag form and denoted α0, α1, α2, . . .

as coefficients on 1, L, L2, . . . in B(L)
C(L) . We can write this as A(L)C(L) = B(L)

8Dickey-Fuller tests are appropriate here. The specific critical values to use will depend
on the specifics of the model, e.g. with or without trend, drift and whether the disturbances
are white-noise or serially correlated (augmented Dickey-Fuller tests are appropriate for this
last consideration if error terms are serially correlated).
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and equate coefficients on the powers of L to compute these coefficients, which
are the lag weights in the ARDL model. Note that the long-run effect in a
rational lag model is given by

∑∞
i=0 αi, which can be computed from:9

∞∑
i=0

αi = B(1)
C(1)

4.2.4.3 Stability

With the geometric lag model, the stability condition |λ| < 1 is necessary for
the model to be well behaved. With the AR(1) model, the autocorrelation
parameter ρ must be such that |ρ| < 1 similarly. The dynamic model (4.58)
requires restrictions that are less obvious. To find this restriction, consider the
existence of an equilibrium value of yt. Fix xt = x̄, wt = 0 and ε = 0. To
find out whether yt would converge to an equilibrium, consider the following
dynamic equation:

yt = ᾱ+ γ1yt−1 + γ2yt−2 + · · ·+ γpyt−p

where we have defined ᾱ = µ + B(1)x̄. Conditional on yt actually converging
to an equilibrium, the equilibrium would be:

ȳ = µ+B(1)x̄
C(1) = ᾱ

C(1)

Whether or not the dynamic equation is stable depends on the characteristic
equation for the AR part of the model. The roots of this characteristic equation
must be greater than one in absolute value to ensure that the model is stable.
The characteristic equation is:

C(z) = 1− γ1z − γ2z
2 − · · · − γpzp = 0

For first-order models, the characteristic equation is:

C(z) = 1− λz = 0

and the only root of this equation is z = 1
λ ; hence, |z| > 1 ⇐= |λ| < 1.

For more general characteristic equations, the roots are the reciprocals of the
characteristic roots of the following matrix:

C =


γ1 γ2 γ3 · · · γp−1 γp
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

· · ·
0 0 0 · · · 1 0

 (4.59)

9We can use the delta method to compute the standard error for the long-run effect.
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Note that the roots may include complex pairs since this is an asymmetric
matrix.10 If one of the roots of C(z) = 1, i.e. a unit root, then

∑p
i=1 γi = 1.

As this is an explosive case, it will be a difficult hypothesis to test. In particular,
under the null hypothesis of C(1) = 0, the F statistic will not have a central
F distribution due to the behaviour of the variables in the model.

Example 4.56. See example 20.4 in Greene (2011) [42].

Remark 4.57. Our coverage of time series econometrics does not include vec-
tor autoregression (VAR), i.e. we only look at univariate models. Prof Agust́ın
Bénétrix will cover VARs. For now, note that the univariate autoregression:

yt = µ+ γ1yt−1 + γ2yt−2 + · · ·+ γpyt−p + εt

may be extended with p− 1 equations:

yt−1 = yt−1

yt−2 = yt−2

etc. to yield a vector autoregression (VAR):

yt = µ + Cyt−1 + εt

where yt is p× 1, εt = (εt, 0, . . . , )′ and µ = (µ, 0, 0, . . .)′.

4.2.4.4 Forecasting

Let us now collect the terms in µ, xt, wt, etc. into a single term:

µt = µ+
r∑
j=0

βjxt−j + δwt

so the ARDL model reduces to

yt = µt + γ1yt−1 + · · ·+ γpyt−p + εt

Definition 4.58. Given information up to time T and forecasts of exogenous
variable, the one-period-ahead forecast of yt in the ARDL(p, r) model is:

ŷT+1|T = µ̂T+1|T + γ1yT + · · ·+ γpyT−p+1 + ε̂T+1|T

In order to compute the prediction interval, we must first consider the
variance of the forecast error:

eT+1|T = ŷT+1|T − yT+1

10For the complex number a+bi, its reciprocal is given by a
M
−
(
b
M

)
i, where M = a2 +b2

and i2 = −1. So, we need M < 1. We will cover some basic complex analysis in the last
topic of this chapter, viz. the frequency domain approach.
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This error comes from three sources. Firstly, since µ, δ, β0, . . . , βr must be
estimated, µ̂T+1|T will differ from µT+1 due to sampling variability in these
estimators. Secondly, if xT+1 and wT+1 have been forecasted, since forecasts
are imperfect, there will be another source of error in the forecast. Thirdly,
while εT+1 is forecast with its expectation of zero, the realisation generally will
not be zero and so here we have again a source of error. While in principle,
estimating the forecast variance V ar(eT+1|T ) would account for all of these
sources of error, in practice it is hard to handle the first two of these errors.
So, we focus now on the third source of the errors before looking at the first two
sources. Ignoring the variation in µ̂T+1|T , i.e. assuming parameters are known
and exogenous variables are perfectly forecasted, the variance of the forecast
error is

V ar(eT+1|T |xT+1, wT+1, µ,β, δ, yT , . . .) = V ar(εT+1) = σ2

Now it is easy to form the forecast and compute the forecast variance. Let
zT+1 = [1, xT+1, xT , . . . , xT−r+1, wT , yT , yT−1, . . . , yT−p+1] and denote the full
estimated parameter vector by θ̂. We would then use

Estimated V ar(eT+1|T |ZT+1) = s2 + z′T+1{Estimated AV ar(θ̂)}zT+1

With respect to forecasting further than one period ahead, the two-period
ahead forecast is given by:

ŷT+2|T = µ̂T+2|T + γ1ŷT+1|T + · · ·+ γpyT−p+2 + ε̂T+2|T

Observe that we use the forecasted yT+1 for period T + 1 and so substituting
for ŷT+1 we get:

ŷT+2|T = µ̂T+2|T+γ1(µ̂T+1|T+γ1yT+· · ·+γpyT−p+1+ε̂T+1|T )+· · ·+γpyT−p+2+ε̂T+2|T

We can do similar for subsequent periods. To simplify the method, consider the
first forecast period and write the forecast with the previous p lagged values as
follows:

ŷT+1|T
yT
yT−1
...

 =


µ̂T+1|T

0
0
...

+


γ1 γ2 · · · γp
1 0 · · · 0
0 1 · · · 0
0 · · · 1 0



yT
yT−1
yT−2
...

+


ε̂T+1|T

0
0
...


Observe that the coefficient matrix on the right-hand side is simply C from
equation (4.59). We still use the notation µ̂T+1|T as the forecast for the deter-
ministic part of the model, though for now we know this value along with C.
Our forecast is the top element of the forecast vector:

ŷT+1|T = µ̂T+1|T + CyT + ε̂T+1|T
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With our assumption that we know each quantity on the right-hand side except
for the period T +1 disturbance, we can get the covariance matrix for this p+1
vector dimensional vector as

E[(ŷT+1|T − yT+1)(ŷT+1|T − yT+1)′] =


σ2 0 · · ·

0 0
...

... · · ·
. . .


So, the forecast variance of ŷT+1|T is σ2. We can extend this to forecasting
further ahead:

yT+2|T = µ̂T+2|T = CŷT+1|T + ε̂T+2|T

= µ̂T+2|T + Cµ̂T+1|T + C2yT + ε̂T+2|T + Cε̂T+1|T

As before, the only unknown quantities are the disturbances; hence, the forecast
variance in this case is given by

V ar(ε̂T+2|T + Cε̂T+1|T ) =


σ2 0 · · ·

0 0
...

... · · ·
. . .

+ C


σ2 0 · · ·

0 0
...

... · · ·
. . .

C′

Let Ψ(1) = Cjj′C′, where j′ = (σ, 0, . . . , 0). Then the forecast variance for the
two-step-ahead forecast is σ(1 + Ψ(1)11), where Ψ(1)11 is the (1, 1) element
of Ψ(1). Finally, generalising this device to a forecast F periods beyond the
sample:

ŷT+F |T =
F∑
f=1

Cf−1µ̂T+F−(f−1)|T + CFyT +
F∑
f=1

Cf−1ε̂T+F−(f−1)|T (4.60)

which allows straightforward computation of forecasts. The conditional fore-
cast variance can be expressed as:

Conditional V ar(ŷT+F |T ) = σ2(1 + Ψ(1)11 + Ψ(2)11 + · · ·+ Ψ(F − 1)11)

where Ψ(i) = Cijj′Ci′. Looking at the F -period-ahead forecast, i.e. equa-
tion (4.60), when the equation is stable (i.e. all roots of matrix C are less than
one in absolute value) CF converge to zero and since the forecasted distur-
bances are zero, the forecast will be dominated by the sum in the first term.
If we also suppose that the forecasts of the exogenous variables are simply
the period T + 1 forecasted values and are not revised, then the forecast will
converge to

lim
F−→∞

ŷT+F |T |µ̂T+1|T = [I−C]−1µ̂T+1|T

So far, we have assumed that parameters are known and exogenous variables
are perfectly forecasted. Now let us allow for all sources of variation in forecasts
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by letting the forecast variance include variation in the forecasts of exogenous
variables and variation in parameter estimates. The first is likely to be in-
tractable, while revision is extremely difficult for the second, especially when
we account for C and µ to be built from estimated parameters. No longer
impossible, it is still an extremely difficult task. We require:

Estimated Conditional V ar(ŷT+F |T ) = σ2[1 + Ψ(1)11 + Ψ(2)11 + · · ·+ Ψ(F − 1)11]
+g′Estimated AV ar(µ̂, β̂, γ̂)g

where we define g as
g = ∂ŷT+F

∂[µ̂, β̂, γ̂]
We can use the bootstrap method for this application, which involves sam-
pling new sets of disturbances from the estimated distribution of εt and then
repeatedly rebuilding the within-sample time series of observations on yt via

ŷt = µ̂t + γ1yt−1 + · · ·+ γpyt−p + ebt(m)

where we let ebt(m) be the estimated ‘bootstrapped’ disturbance in period t
during replication m. We repeat the process M times and use new parameter
estimates and generate a new forecast for each replication. The estimated
forecast variance is given by the variance of these forecasts.

4.3 Autocorrelation and Partial Autocorrelation
Functions

4.3.1 Autocorrelation Functions
We can equivalently define the autocovariance function for the process yt as
γ(k) = Cov(yt, yt−k) and the autocorrelation function as ρ(k) = γ(k)

γ(0) , where
−1 ≤ ρ(k) ≤ 1. Remember that for a stationary process, the ACF is a function
of k in addition to the parameters of the process and summarises time domain
properties. With a stationary stochastic process, a characteristic of the ACF
is that it either suddenly goes to zero at a finite lag or slowly tends to zero.

Example 4.59 (AR(1)). The AR(1) process has an ACF of

ρ(k) = φk

and so this geometric series declines monotonically from ρ(0) = 1 when φ > 0
and also declines towards zero with damped oscillations between positive and
negative values if φ < 0. For the AR(1), i.e. yt = φyt−1 + εt, recall that
ρ(k) = φρk−1 for k ≥ 1, which interestingly resembles the process itself.

Example 4.60 (AR(2)). For AR(2), WLOG µ = 0 as before:

yt = φ1yt−1 + φ2yt−2 + εt
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and if the process is stationary, then since V ar(yt) = V ar(yt−s) ∀s, V ar(yt) =
Cov(yt, yt) and Cov(εt, yt−s) = 0 if s > 0:

γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε

ICBST with additional lags:

γ(1) = φ1γ(0) + φ2γ(1)
γ(2) = φ1γ(1) + φ2γ(0)

∴ γ(0) = σ2
ε

[
1−φ2
1+φ2

]
(1− φ2)2 − φ2

1

And since the variance is constant, dividing by γ(0) yields the expression for
the autocorrelations:

ρ(1) = φ1ρ(0) + φ2ρ(1)

which also uses the starting values ρ(0) = 1 and ρ(1) = φ1
1−φ2

. ICBST with
additional lags:

ρ(2) = φ1ρ(1) + φ2

∴ ρ(2) = φ2
1

(1− φ2) + φ2

In general for k ≥ 2:

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2)

As with the AR(1) example, the ACF follows the same difference equation as
the series itself and the behaviour of the ACF depends on the parameters φ1, φ2
and k. The characteristic equation determines the exact behaviour of the ACF:

ρ(k) = φ1

(
1
z1

)k
+ φ2

(
1
z2

)k
and the roots of this equation are given by

1
z

= φ1 ±
√
φ2

1 + 4φ2

2

As earlier, if we are to have two real roots, then their reciprocals lie within the
unit circle (i.e. they will be less than one in absolute value) so ρ(k) will be a
sum of two terms decaying to zero; if we are to have two complex roots, then
ρ(k) will be a sum of two terms exhibiting damped oscillatory behaviour.

While most applications of AR models focus on the case where p ≤ 2, higher
order AR models can be dealt with similarly.
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Example 4.61 (AR(p)).

yt = φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

the autocovariances are given by the Yule-Walker equations

γ(0) = φ1γ(1) + φ2γ(2) + · · ·+ φpγ(p) + σ2
ε

γ(1) = φ1γ(0) + φ2γ(1) + · · ·+ φpγ(p− 1)

etc. Once again, the ACF follows the same difference equation as the series
itself, viz.

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2) + · · ·+ φpρ(k − p)

Example 4.62 (MA(1)). For an MA(1) process yt:

yt = εt − θεt−1

γ(0) = (1 + θ2)σ2
ε

γ(1) = −θσ2
ε

γ(k) = 0 k > 1

Example 4.63 (MA(2)). Multiplying out the terms and taking expectations
for an MA(2) process yields

γ(0) = (1 + θ2
1 + θ2

2)σ2
ε

γ(1) = (−θ1 + θ1θ2)σ2
ε

γ(2) = −θ2σ
2
ε

γ(k) = 0 k > 2

For the MA(q) process, the pattern is similar. The key characteristic of an
MA process is that the ACF suddenly drops to zero at q+ 1. This will help us
distinguish between AR and MA processes.

ARMA(p, q) processes are more complicated because they are mixtures of
AR and MA forms.

Example 4.64 (ARMA(1,1)). Consider the ARMA(1,1) process, which is de-
fined by

yt = φyt−1 + εt − θεt−1

In this case, the Yule-Walker equations are given by

γ(0) = E[yt(φyt−1 + εt − θεt−1)] = φγ(1) + σ2
ε − σ2

ε (θφ− θ2)
γ(1) = φγ(0)− θσ2

ε

γ(k) = φγ(k − 1) k > 1

Example 4.65 (ARMA(p, q)). The characteristic of an ARMA process is that
when the MA part is of order q, there will be q terms in the ACF that are
complicated functions of both the AR and MA components, but after q periods,
the autocorrelation will be given by

ρ(k) = φ1ρ(k − 1) + φ2ρ(k − 2) + · · ·+ φpρ(k − p) k > q

122



c©Michael Curran

4.3.2 Partial Autocorrelation Functions
While the ACF describes the gross correlation between yt and yt−k, this can
mask a very different underlying relationship. For instance, perhaps we observe
a correlation between yt and yt−2 mainly because both variables are correlated
with yt−1. Looking at the AR(1) process, yt = φyt−1 + εt, E(εt) = 0 implies
E(yt) = E(yt)/(1 − φ) = 0. The second gross autocorrelation is ρ(2) = φ2,
but we may be interested in knowing what the correlation between yt and yt−2
actually is net of the intervening effect of yt−1. With this AR(1), removing
the effect of yt−1 from yt implies that only εt remains, which is uncorrelated
with yt−2. So, the partial autocorrelation between yt and yt−2 is zero for the
AR(1).

Definition 4.66 (Partial Autocorrelation Coefficient). The partial correlation
between yt and yt−k is the simple correlation between yt−k and yt minus that
part explained linearly by the intervening lags, i.e.

ρ(k)∗ = Corr[yt − E∗(yt|yt−1, . . . , yt−k+1), yt−k]

where E∗(yt|yt−1, . . . , yt−k+1) is the minimum mean-squared error predictor of
yt by yt−1, . . . , yt−k+1. (Greene, 2011:724) [42]11

The function E∗(.c) may be the linear regression if the conditional mean
was linear; but it may not. The optimal linear predictor is the linear regression,
so we have

ρ(k)∗ = Corr[yt − β1yt−1 − β2yt−2 − · · · − βk−1yt−k+1, yt−k]

where

β = [β1, β2, . . . , βk−1]
= {V ar[yt−1, yt−2, . . . , yt−k+1]}−1 × Cov[yt, (yt−1, yt−2, . . . , yt−k+1)]′

So, this equation may be seen to be a vector of regression coefficients and we
are computing the correlation between a vector of residuals and yt−k. There
are many ways to compute this but let us focus on one equivalent definition
for computation.

Definition 4.67 (Partial Autocorrelation Coefficient). The partial correlation
between yt and yt−k is the last coefficient in the linear projection of yt on
[yt−1, yt−2, . . . , yt−k],

β1
β2
...

βk−1
ρ(k)∗

 =


γ(0) γ(1) · · · γ(k − 2) γ(k − 1)
γ(1) γ(0) · · · γ(k − 3) γ(k − 2)
...

...
. . .

...
...

γ(k − 1) γ(k − 2) · · · γ(1) γ(0)


−1 

γ(1)
γ(2)
...

γ(k)


11The minimum mean square error predictor or minimum mean square estimator (MMSE)

is the optimal predictor that we will define when we study forecasting in chapter 5; see
definition 5.1 together with the proof and the discussion that follows it.
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Example 4.68. Consider the AR(p) model

yt = γ1yt−1 + γ2yt−2 + · · ·+ γpyt−p + εt

We want the last coefficient in the projection of yt on yt−1, then on (yt−1, yt−2),
etc. The first will be the simple regression coefficient of yt on yt−1:

ρ1∗ = Cov(yt, yt−1)
V ar(yt−1) = λ1

λ0
= ρ1

Note that the first partial autocorrelation coefficient for any process equals the
first autocorrelation coefficient. For AR(p), ρ1∗ will be a mixture of all the γ
coefficients and when p = 1, ρ1∗ = ρ1 = γ. For AR(p), the last coefficient in the
projection on p lagged values is γp and any additional partial autocorrelation
must be zero since k > p =⇒ ρk∗ = Corr(εt, yt−k) = 0. So, for AR(p), ACF
ρk gradually decays to zero – monotonically if characteristic roots are real or
like a sinusoidal pattern if they are complex. We can add to this now that
the PACF ρk∗ will be irregular up to lag p and then the PACF will suddenly,
permanently drop to zero.

Example 4.69. Recall that for an MA(q) process, the ACF has q irregular
spikes and then it drops to zero and remains there. To find the PACF, first
write the model as

yt = (1− θ1L− θ2L
2 − · · · − θqLq)εt

Assuming that the series is invertible:
yt

1− θ1L− · · · − θqLq
= εt

yt = π1yt−1 + π2yt−2 + · · ·+ εt

=
∞∑
i=1

πiyt−i + εt

Since the AR form of the MA(q) process has an infinite number of terms, the
PACF will not drop to zero as it does for the AR process. Instead, the PACF
of an MA process will be similar to the ACF of an AR process. For the MA(1),
yt = εt − θεt−1, the AR representation is

yt = θyt−1 + θ2yt−2 + · · ·+ εt

This is similar to the AR(∞). So, the PACF of an MA(1) process is identical
to the ACF of an AR(∞) process, i.e. ρk∗ = θk.

Example 4.70. The ARMA(p,q) will have its ACF and PACF as mixtures of
the two forms we have already discussed. This follows since ARMA(p,q) is a
mixture of AR and MA processes. Normally, the ACF of an ARMA process will
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have a few notable spikes in the early lags, which correspond to the number of
MA terms and thereafter they will correspond to the smooth pattern of the AR
part of the model. Note that high-order MA process are uncommon and high-
order AR processes (p > 2) generally are the result of nonstationary processes;
the ‘workhorses of the applied literature’ – for stationary processes – are (2,0)
and (1,1) processes. An ARMA(1,1) will have an ACF and PACF that both
exhibit a distinctive spike at lag 1 and then decay exponentially after the first
lag.

4.4 Identification, Estimation, Testing and Forecasting

In this section, we will present the Box-Jenkins analysis, which is a popular
method for univariate time-series modeling and forecasting. We can break the
method down into five steps:

1. Assessing if the series are stationary or nonstationary and making suit-
able data transformations to induce stationarity if the data illustrate
otherwise.

2. Identifying an appropriate ARMA model – choosing p and q for ARMA(p, q).

3. Estimating the model parameters.

4. Testing – model diagnostics.

5. Forecasting or repeating steps 2 & 3.

4.4.1 Checking for stationarity
A first pass to check for stationarity is visual inspection of plots. Are there
trends? Is heteroscedasticity apparent? These should be fairly straightforward
to see in the data but beware that, in general, casual inspection of graphs
is no substitute for formal testing.12 The correlogram, which plots sample
autocorrelations against lag length is very useful for this purpose. Recall that
the autocorrelation function was defined as

ρ(yt, yt−j) = Cov(yt, yt−j)
V ar(yt)

j = 1, 2, . . .

12Inevitably, when choosing what topics to cover within a relatively short course, trade-
offs have to be made and as this course is centered around stationary time series, we will
not explore the topic of nonstationarity. Furthermore, most work on nonstationarity and
cointegration was carried out during the 1980s and we will be covering even more recent
developments in the area of simulation at the very end of these lectures in the final chapter.
For now, note the existence of different tests of ‘unit roots’ (when the AR coefficient is 1) such
as Dickey-Fuller and its extensions; also recall the tests from last term for heteroscedasticity.
See chapter four in Enders (2008) [27], section 6.1 of Dave & DeJong (2011) [21] and chapter
5 in Harvey (1993) [46]; for the (more) adventurous, take a look at a classic paper on this
by Sims & Uhlig (1991) [77] and for the (even more) adventurous, chapter six in Bauwens,
Lubrano & Richard (1999) [5] presents a Bayesian perspective on unit root inference.
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The sample autocorrelation function is merely the sample counterpart of this
by the analogy principle:

rj =
∑
t (yt − ȳ)(yt−j − ȳ)∑

t (yt − ȳ)2 j = 1, 2, . . .

The correlogram of a stationary series drops off as the number of lags becomes
large, but this does not usually happen for a nonstationary series. Usually a
correlogram that declines linearly implies that the underlying process is non-
stationary; for example, the mean and the variance could have changed. If
nonstationarity is found, possible transformations include logarithms to sta-
bilise the variance since outliers get squeezed and first-differences to remove
trends. If there are only one or two outliers, we are not doing too badly. Let
us look at the latter transformation in example 4.71.

Example 4.71. One example of a nonstationary process is a deterministic
trend model:

yt = α+ βt+ ut

This is nonstationary since

E(yt) = α+ βt

This is an easy model to transform into a stationary one. At t− 1:

yt−1 = α+ β(t− 1) + ut−1

yt − yt−1 = ∆yt = β + (ut − ut−1)
so the time trend disappears and assuming that E(ut) = 0, we have that
E(∆t) = β. The process is now difference-stationary. So, the deterministic
trend model can be made stationary by first-differencing, which is one example
of a transformation that renders certain nonstationary models stationary by
removing trends. Higher order trends can be removed by modifying the first-
differencing procedure, e.g. by differencing n times.

Other methods to induce stationarity include detrending (in which case we
say the resulting series is trend stationary) and the use of filters to separate the
trend from the cycle such as the Hodrick-Prescott (HP) filter. We will return
to the HP filter in the final chapter.13 If the series displays heteroscedastic-
ity, we can first take logarithms and then difference if there are still trends.
We typically plot the correlogram of yt and successive differences ∆yt, ∆2yt,
etc., look at the correlograms at each stage and continue differencing until
the correlogram dampens. The very concept of the Box-Jenkins methodology
is ARIMA where ‘I’ stands for ‘integrated’. An ARIMA(p, d, q) differenced d
times becomes an ARMA(p, q) process, i.e. an ARIMA(p, d, q) is nonstation-
ary, integrated of order d (denoted I(d)), while an ARMA(p, q) is stationary,
integrated of order zero (denoted I(0)).

13For those interested in the above mentioned methods, see section 6.1 in Dave & DeJong
(2011) [21]. Of course, seasonal peaks in series may indicate nonstationarity as well and other
methods are involved to deseasonalise the data; see section 6.2 in Dave & DeJong (2011) [21].
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4.4.2 Identification
We identify ARMA models through the use of the correlogram and the partial
autocorrelation function by matching the sample correlogram with the theo-
retical autocorrelation function of a specific AR, MA or AMRA process:

1. If the correlogram cuts off at lag j = q, then assume that the series follows
an MA(q) process.

2. If the correlogram does not cut off, then assume that the process is AR
or ARMA.

3. If the correlogram does not cut off, but the PACF cuts of at lag j = p,
then assume that the series follows an AR(p) process.

4. If neither the correlogram nor the PACF cuts off, then assume that the
series follows an ARMA process. However, it is almost impossible to
figure out the values for p and q. Generally, we take a simple version first
or a few combinations and assess the model through the diagnostic step
and / or the forecasting step of Box-Jenkins.

4.4.3 Estimation
4.4.3.1 MA models

Example 4.72 (MA(1)). Let us take the example of the MA(1) model:

yt = µ+ θ1εt−1εt (4.61)

It is important to remember that this differs from regression equations because
nothing on the right-hand side is known. We neither know µ nor the random
shocks. Therefore, we cannot estimate (4.61) by regression. Instead, we es-
timate MA models by maximum likelihood estimation (MLE). Note that the
autocorrelation function we derived earlier for the MA(1) process is

ρ1 = θ1

1 + θ2
1

and consider the sample autocorrelation, where we use θ̂1 to denote our estimate
of θ1:

r1 = θ̂1

1 + θ̂2
1

=⇒ r1 + r1θ̂
2
1 = θ̂1

⇐⇒ r1θ̂
2
1 − θ̂1 + r1 = 0

There are two solutions for this quadratic equation in θ̂1:

θ̂2
1 = 1±

√
1− 4r2

1
2r1
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We need to choose one of these two solutions. Note that any root that is
greater than one puts more weight on the past and we generally rule this out;
we also generally rule out any root above 0.5. For MLE, see also appendix 2.1
of Enders (2008) [27]. Note that the formula becomes more complicated for
MA(q) processes but computers handle ML with MA(q) with ease.

4.4.3.2 AR models

Example 4.73 (AR(p)). Unlike with MA models, the AR(p) is a legitimate
regression equation since we know the past values of the y’s on the right-hand
side

yt = µ+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p + εt

and therefore we may use OLS, which is asymptotically valid. As long as the
disturbances εt are not autocorrelated, OLS estimates of the φ parameters are
consistent, even though the regressors are lagged dependent variables. See
section 2.7 in Enders (2008) [27].

4.4.3.3 ARMA models

Example 4.74 (ARMA(p, q)). Due to the MA component in ARMA models,
estimation of say an ARMA(p, q) model

yt = µ+ φ1yt−1 + · · ·+ φpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q

is much more complicated and requires ML estimation. Computers do this
with ease. See section 2.7 in Enders (2008) [27].

4.4.4 Diagnostics
We might first check how well the estimated models fit the data, e.g. R2 and
the ability of the estimated models to track it, i.e. find turning points. We can
also check the randomness of the residuals; if the residuals are not found to be
random, then the model is inadequate. For residuals, a first check is to plot and
inspect the residuals over time (a time plot). Then we could plot and inspect
a correlogram of residuals, which should be one at zero and zero for any lag
length after that. With these atheoretic residual checks, we could finally use a
test statistic such as the Box-Pierce Q statistic, which tests whether the first
M autocorrelations for residuals are significantly different from zero. Under
the null hypothesis, autocorrelations for residuals are asymptotically Normal
with mean zero and variance 1

N where N is the sample size:

Q = N

M∑
j=1

r2
j ∼ χ2

M

Thus, if Q > χ2
M , then we should reject the null hypothesis that the residuals

are random and that the model is adequate, at the α-significance level.

128



c©Michael Curran

4.4.5 Forecasting
Milton Friedman’s pragmatic philosophy (1953) [33] asserted that the ultimate
test of a model was in its ability to forecast. In this subsection, we will consider
forecasting with MA models, AR models and ARMA models.

4.4.5.1 Forecasting with MA models

Example 4.75 (MA(1)). A zero mean µ = 0 MA(1) model is written
yt = εt + θ1εt−1

We need to generate observations from what is unknown. We can convert MA
to AR if we have a stability assumption that |θ1| < 1:

εN = yN − θ1εN−1

= yN − θ1(yN−1 − θ1εN−2)
= yN − θ1yN−1 + θ2

1εN−2

We will follow this technique by considering the one-period-ahead forecast for
an MA(1):

ŷN+1 = ε̂N+1 + θ̂1ε̂N

where
ε̂N = yN − θ̂1yN−1 + θ̂2

1yN−2 − · · ·+ (−θ̂1)kyN−k (4.62)
ε̂N+1 = E(εN+1) = 0

∴ ŷN+1 = θ̂1ε̂N

Similarly, the two-period-ahead forecast will be
ŷN+2 = ε̂N+2 + θ̂1ε̂N+1

= E(εN+2) + θ̂1E(εN+1)
= 0

We could also estimate ε̂N+1 by adapting (4.62) and using ŷN+1 as the first
right-hand side term. So, the two-period-ahead forecast for an MA(1) will be
zero, which reflects the short memory of MA processes, which display rapid
convergence to the mean (mean reversion), i.e. there is rapid reversion of
forecasts to the mean value 0 (µ more generally).

Example 4.76 (MA(2) with µ = 0). Using ε̂N+k = 0, k = 1, 2, 3, the one-,
two- and three-period-ahead forecasts are given by:

ŷN+1 = ε̂N+1 + θ̂1ε̂N + θ̂2ε̂N−1 = θ̂1ε̂N + θ̂2ε̂N−1

ŷN+2 = ε̂N+2 + θ̂1ε̂N+1 + θ̂2ε̂N = θ̂2ε̂N

ŷN+3 = ε̂N+3 + θ̂1ε̂N+2 + θ̂2ε̂N+1 = 0
Note that the three-period-ahead forecast says nothing due to short memory
– any q > 2 periods ahead; the three-period-ahead forecast is essentially the
mean 0.
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4.4.5.2 Forecasting with AR models

Example 4.77 (AR(1)). The one- to j-period ahead forecasts are given by:

ŷN+1 = µ̂+ φ̂1yN +
WN shock︷ ︸︸ ︷
ε̂N+1 = µ̂+ φ̂1yN

ŷN+2 = µ̂+ φ̂1ŷN+1 + ε̂N+2

= µ̂+ φ̂1ŷN+1 = µ̂+ φ̂1µ̂+ φ̂2
1yN

ŷN+j =
j−1∑
i=0

φ̂i1µ̂+ φ̂j1yN

Note the use of the zero mean for forecasting future disturbances. If the process
is stationary, i.e. if |φ1| < 1, then in the limit as j −→ ∞, we get the mean of
the AR(1) process: µ̂

1−φ̂ , i.e. µ̂

1−φ̂ is the mean, not µ̂. In contrast to the MA
model, AR models have something to say about the long-term future because
AR processes have long memories. While the correlation reduces, we do not
reach zero, which is the residual memory. So, there is a slower tendency for
forecasts to settle down to a given value (mean), depending on the size of φ̂1.

Example 4.78 (AR(2)). The one-period-ahead forecast for the AR(2) model
is given by

ŷN+1 = µ̂+ φ̂1yN + φ̂2yN−1 + ε̂N+1 = µ̂+ φ̂1yN + φ̂2yN−1

There is more complexity involved in ŷN+1 and the general forecast ŷN+j ,
which are left as optional exercises.

4.4.5.3 Forecasting with ARMA models

Example 4.79 (ARMA(1,1)). For the ARMA(1,1), the one-period-ahead fore-
cast is

ŷN+1 =

AR component︷ ︸︸ ︷
µ̂+ φ̂1yN +

MA component︷ ︸︸ ︷
ε̂N+1 + θ̂1ε̂N

= µ̂+ φ̂1yN + θ̂1yε̂N

since we do not know anything about future random shocks. The two-period-
ahead forecast is left as an optional exercise. While forecasts further into the
future are more complicated, in the distant future ARMA behaves like an
AR model, reverting to its mean as the forecast horizons increase (forecasting
further and further ahead). This follows because φ̂j1 −→ 0 as j −→ ∞ when
|φ̂1| < 1. So, like MA models, forecasts from AR and ARMA models tend
towards some given value as the forecast horizon increases. However, they do
so more slowly.
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Remark 4.80. A caveat is in order here: the above discussion assumes that
these models remain valid into the future, but typically these models are only
good as short-term forecasting models since parameters change over time. Fore-
casting can be hazardous. The rule of thumb is that we should weight up more
factors than simply what our forecast model ‘churns-out’. We will return to
the issue of forecasting in more detail in chapter 5.
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Chapter 5

Forecasting

5.1 Optimal Prediction

Optimal predictions in ARMA models tend to be conducted recursively. A
method for predictions in unobserved components models is discussed in Harvey
(1993) chapter 3, which involves the state space form [46]. We can also use
the state space form to make exact finite sample predictions about ARMA
models given general assumptions on initial conditions. Additionally, though
less important for this course, we can use the state space form to obtain the
general solution to optimal estimation of unobserved components with finite
samples, which is known as signal extraction – ‘picking out the message from
the noise’.

Definition 5.1. The optimal predictor l steps ahead, given a set of observa-
tions on yt up to and including yT , is the expected value of yT+l conditional
on the information available at time T :

ỹT+l|T = E(yT+l|YT ) = ET (yT+l)

where YT is the information set {yT , YT−1, . . .} and ET denotes expectation
conditional on YT . The expectation is ‘optimal’ since it minimises the mean
square error.

Proof. WTS: ỹT+l|T has minimum mean square error (minimum MSE). Ob-
serve that for any predictor ŷT+l|T based on information up to and including
time T , the estimation error can be split into two parts as follows:

yT+l − ŷT+l|T = [yT+l − E(yT+l|YT )] + [E(yT+l|YT )− ŷT+l|T ]

The second term on the RHS is fixed at T , so squaring the entire expression
and taking expectations (at time T ), the cross product term vanishes. So:

MSE(ŷT+l|T ) = V ar(yT+l|YT ) + [ŷT+l|T − E(yT+l|YT )]2

Note that the first term on the RHS, i.e. the conditional variance of yT+l is
independent of ŷT+1|T . The expression is minimised when ŷT+l|T = ỹT+l|T .
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Therefore, the minimum mean square estimate (MMSE) – or the minimum
mean squared estimator (also abbreviated (MMSE)) if we view it as a rule
rather than a number – of yT+l is the conditional mean as in the definition of
the optimal predictor above and furthermore, it is unique.

When the optimal predictor is treated as a rule as opposed to a number,
it is an estimator of yT+l rather than an estimate. ICBST it is the MMSE
since it minimises the MSE when the expectation is taken over all observations
in the information set, following from LIE. When observations are normally
distributed, the V ar(yT+l|YT ) is independent of the observations and therefore
it can directly be interpreted as the MSE of the estimator; however, normality
is not necessary for this property of the MSE as we shall see soon. Generally,
the MMSE of a random variable is the expectation of the variable conditional
on the relevant information set. Conditional expectations do not necessarily
have to be linear combinations of the observations. If we restrict to the class
of linear estimators, we encounter the familiar best estimator, the MMSLE (L
for linear) or BLUE / BLUP (P for predictor) as you may have encountered in
introductory econometrics courses.

Let us now concentrate on optimal predictors of the future through MMSEs
for ARMA models. Assume the ARMA process is stationary and invertible
with known parameters and independent, zero mean, constant variance (σ2)
disturbances. Assume also that for MA and mixed processes, εT , εT−1, . . . are
all known, i.e. we know present and all past disturbances, which is equivalent to
assuming an infinite realisation of observations going backwards in time. While
this is an unrealistic assumption, it can be modified to produce a predictor
calculated from a finite sample. At time T + l, the ARMA(p, q) is:

yt+l = φ1yT+l−1 + · · ·+ φpyT+l−p + εT+l + · · ·+ θqεT+l−q

The MMSE of a future observation as that above is its expectation conditional
on all information up to time T as we described in the definition of the optimal
predictor. Taking conditional expectations of the above equation, recognizing
that εt = 0 for all future values since they cannot be predicted as they are
independent, we get the following:

ỹT+l|T = φ1ỹT+l−1|T + · · ·+φpỹT+l−p|T + ε̃T+l|T + · · ·+θq ε̃T+l−q|T , l = 1, 2, . . .
(5.1)

where ỹT+j|T = yT+j for j ≤ 0 and

ε̃T+j|T =
{

0 j > 0
εT+j j ≤ 0

Equation (5.1) provides a recursion for calculating optimal predictions.

Example 5.2. With AR(1), (5.1) yields the following difference equation:

ỹT+l|T = φỹT+l−1|T l = 1, 2, . . .
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with starting value ỹT |T = yT and so we can solve this difference equation to
get

ỹT+l|T = φlyT (5.2)

So, the predicted values decay exponentially towards zero and the forecast
function has the same form as the autocovariance function.

Example 5.3. An MA(1) at time T + 1 can be expressed as

yT+1 = εT+1 + θεT

The prediction equation makes use of the fact that εT+1 = 0 since it is unknown
at time T :

ỹT+1|T = θεT

The prediction equation for T + l where l > 1 is ỹT+l|T = 0. Therefore,
knowledge of the data generating process (DGP) is unhelpful in predicting at
horizons greater than one period ahead for the MA(1) model.

Example 5.4. One example of an ARMA(2,2) process is:

yt = 0.6yt−1 + 0.2yt−2 + εt + 0.3εt−1 − 0.4εt−2

Suppose yT = 4.0, yT−1 = 5.0, εT = 1.0 and εT−1 = 0.5. Then

ỹT+1|T = 0.6yT + 0.2yT−1 + 0.3εT − 0.4εT−1 = 3.5
ỹT+2|T = 0.6ỹT+1|T + 0.2yT − 0.4εT = 2.5
ỹT+l|T = 0.6ỹT+l−1|T + 0.2ỹT+l−2|T l ≥ 3

Splitting the MA(∞) representation of yt into

yT+l =
l∑

j=1
ψl−jεT+j +

∞∑
j=0

ψl+jεT−j (5.3)

Taking conditional expectations yields the MMSE of the forecast yT+l:

ỹT+l|T =
∞∑
j=0

ψl+jεT−j (5.4)

So, the first term on the RHS of (5.3) is the error in predicting l steps ahead
and its variance is the prediction MSE:

MSE(ỹT+l|T ) = (1 + ψ2
1 + · · ·+ ψ2

l−1)σ2 (5.5)

Note that this is independent of the observations so it is the unconditional MSE,
i.e. the MSE averaged over all possible realisations of observations rather than
the estimator given by (5.4).
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Example 5.5. With the AR(1) model, ψl+j = φl+j , so:

ỹT+l|T =
∞∑
j=0

φl+jεT−j = φl
∞∑
j=0

φjεT−j = φlyT

just as in (5.2).

MSE(ỹT+l|T ) = [1 + φ2 + · · ·+ φ2(l−1)]σ2 = 1− φ2l

1− φ2 σ
2

l−→∞−→ σ2

1− φ2 = V ar(yt)

Let us now add the assumption that εt’s are normally distributed; thus, the
conditional distribution of yT+l is also normal. A 95% prediction interval for
yT+l is

yT+l = ỹT+l|T ± 1.96

1 +
l−1∑
j=1

ψ2
j

 1
2

σ

The correct interpretation of this prediction interval is the following: for a
given sample, there is a 95% chance that yT+l will lie within the interval.

As mentioned earlier, the assumption that all present and past disturbances
are known for MA and mixed process means that we have a knowledge of
ε’s into the infinite past, which is unrealistic. Alternatively, we could place
assumptions on the initial conditions permitting recursive computation of the
values for the required disturbances. However, the predictions will still not
be optimal if these assumptions are violated; see Harvey 3.3 (1993) [46]. See
Harvey 4.4 for a method of computing exact optimal finite sample predictions
without making these assumptions [46].

While the assumption that the disturbances are independent is necessary for
deriving the MMSE of a future observation in an ARMA model, if the assump-
tion is relaxed from independence to uncorrelatedness, then the result does not
necessarily hold since the conditional expectation of future disturbances are
not necessarily zero. However, restriction attention to linear predictors, the
predictor given by the RHS of (5.4) is still the best in that it minimises the
unconditional prediction MSE, i.e. it is the MMSLE or BLUP.

Definition 5.6. A linear predictor is a linear function of the observations and
so is a linear function of disturbances, past and present and is written as

ŷT+l|T =
∞∑
j=0

ψ∗l+jεT−j

where ψ∗l+j are pre-specified weights.

The unconditional expectation of the prediction error is given by

yT+l−ŷT+l|T = εT+l+ψ1εT+l−1+· · ·+ψl−1εT+1+(ψl−ψ∗l )εT+(ψl+1−ψ∗l+t)εT−1+· · ·
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When the unconditional expectation of the prediction error is zero, the predic-
tor is unbiased.

MSE(ŷT+l|T ) = σ2(1 + ψ2
1 + · · ·+ ψ2

l−1) + σ2
∞∑
j=0

(ψl+j − ψ∗l+j)2

which is minimised when ψ∗l+j = ψl+j and so the MMSLE(yT+l) is given
by (5.4) with MSE as in (5.5).

5.2 Forecast Assessment

The outline of this section is as follows. Firstly, I will present a case for using
forecast assessment tools before briefly giving a revision of some forecasting
basics. Next I will discuss how to estimate parameters for forecasting. Sub-
sequent material focuses on two areas in forecast assessment representing the
bulk of this first topic in the chapter, viz. (i) comparing forecasts and fore-
casters to determine which forecast is optimal and (ii) comparing forecasts and
models, i.e. using forecast assessment tools to learn about models.

5.2.1 Motivation
Perhaps the first question that may be asked is the following: should we care to
study forecast assessment tools, for instance, especially if we are not involved in
forecasting? The simple answer is yes, we should care. Not only are forecasting
assessment tools appropriate for when we want to know about the future, but
they are also very useful as model diagnostics. Recent advances in the research
on forecast assessment include methods that focus on both goals, forecasting
to know about the future and forecasting as a diagnostic for model evaluation.
These two motivations will be important for the remainder of section 5.2.

Forecasts can be helpful when we want to know about or predict the fu-
ture. Financial markets place great emphasis on the quality of forecasts. The
existence of forecasting companies across the world and the various Survey of
Professional Forecasters (SPF), e.g. in the US with the oldest quarterly survey
of macroeconomic forecasts and in Europe in the ECB testify to the demand
for quality forecasts.

In addition to the use of forecasts for trying to predict the future, we may
want to evaluate models in terms of the following:

H0: model is correct

HA: specific alternative

However, the question remains as to why we should use forecasting methods
to evaluate models. The following three points serve to answer this question.

1. Forecasting methods tend to suffer less from problems such as in-sample
overfitting and that of data mining. The first point is particularly true
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since having a good fit in the sample (in-sample overfitting) tends to hurt
you out-of sample. Forecasting being conducted out-of sample means that
data mining tends to be penalised.

2. Forecasting assessment methods help to deal with the problem of insta-
bility. They can be used to check whether the model stable through
time.

3. Sometimes in-sample methods may be very complicated in which case
forecast methods can be computationally convenient.

5.2.2 Forecasting 101
5.2.2.1 Terminology

Let Yt+h denote the variable we want to forecast at horizon h. Let Xt be the
vector of variables that we will use in making the forecast – this may include
such variables as lags of Yt and possibly other variables too. Let ft+h|t denote
the forecast of Yt+h that we make at time t. Allow et+h = Yt+h − ft+h|t to
represent the ‘forecast error’ and L(e) = L(Y − f) to be the loss function that
is associated with this error. Finally, the ‘risk’ associated with forecast f is
written as E(L(e)) = E(L(Y − f)).

5.2.2.2 Minimum MSE forecasts

With one forecast, let us assume that the loss function is quadratic, i.e.

L(e) = a+ be2

This will imply that risk will be the mean square error (MSE).1 So, we
need to find the minimum MSE (MMSE) forecast, which will be given by the
regression function:

ft+h|t = E(Yt+h|Xt)

This is an important result and the best function of the data will give the
best forecast. The challenge is the figure out what ft+h|t actually is. With
a small number of predictor variables (X), this is relatively simple. With a
large number of predictor variables (X), this can be complicated and will be
the subject of section 5.3.

Now I will present three properties of MMSE forecasts. Firstly, note that
strict exogeneity implies week exogeneity:

E(et+h|Xt) = 0 =⇒ E(et+hXt) = 0

So, we cannot predict forecast errors using the data we have. Secondly, if
current and lagged values of the forecast variable Yt are used to make forecasts

1Exercise: prove that a quadratic loss function implies that associated risk will be the
mean square error.
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of Yt, then Xt implicitly incorporates present and past values of et; hence,
E(et+het) = 0, so

et+h ∼MA(h− 1)

Thirdly, from the definition of forecast error in the terminology section above,
it follows that

Yt+h = ft+h|t + et+h

=⇒ σ2
Y = σ2

f + σ2
e ∵ Corr(ft+h|t, et+h) = 0

∴ σ2
Y ≥ σ2

f (5.6)

Every optimal forecast must satisfy (5.6), else it is not the case that the forecast
is optimal. This provides a useful diagnostic check for whether f is an optimal
forecast of Y . Note that when σ2

f is low and σ2
Y is high, it can be difficult

to forecast Y . Shortly, we will investigate the case when the loss function is
not quadratic. In conclusion, with forecast assessment, we look at the forecast
error Y − f = e and see if this behaves as if it arose from an MMSE forecast.
Since we know the properties of MMSE forecasts, we can adequately judge if
e behaves as such.

What about the case of when we have more than one forecast? Combin-
ing forecasts is practically a good idea – remember our twin goals: when the
future matters and using forecast assessment for model evaluation. Regarding
notation, let f1 and f2 denote two forecasts of Y and allow consider a third
forecast to be:

f3 = β0 + β1f
1 + β2f

2

What is critical here is answering the question as to how we should combine
the first two forecasts to produce f3, i.e. what values of β should we choose? We
have seen that optimal forecasts correspond to regressions. MMSE forecasts are
regressions and combined optimal forecasts will be the best MMSE forecasts
(E(Y |f1, f2)), so β will be the population values from the linear regression
of Yt+h on f1

t+h|t and f2
t+h|t; see Bates & Granger (1969) [4] and Granger &

Ramanathan (1984) [41] for more. Obviously, extending the results to the
case where n ≥ 2 is trivial. For a more advanced treatment, see Timmermann
(2006) [79] who adds complications such as correlated series and multiple series.

Before moving onto other loss functions, let us consider one practical issue
with combining forecasts, viz. using estimates of the β’s from sample regres-
sions. To add to the list of the puzzles you will no doubt be studying this year,
here we have the ‘forecast combining puzzle’. Even with a moderately large
number of forecasts to combine, forecasts constructed via estimated β’s suffer
poor performance and it has been noted in the literature (surveyed by Tim-
mermann) that ad hoc averages such as sample means, medians, ‘consensus’
forecasts, etc. typically yield superior performance. We will return to this in
section 5.3.
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5.2.2.3 Other loss functions

Since Risk(f) = E(L(Y − f)) and if Yt+h|Xt ∼ N(µt+h|t, σ2
t+h|t), it can be

shown that the optimal forecast will be ft+h|t = µt+h|t +α(σ2
t+h|t).2 Note that

with the variance depending on time, the tails of the distribution can move.
This result means that the optimal forecast for any loss function is given by a
regression function and a function of the conditional variance. If the conditional
variance is constant, then the best forecast is given by the regression function
plus a constant determined by the variance, but this does not matter as much!
The implication is that with conditional homoscedastic Gaussian distributions,
optimal forecasts are MMSE forecasts, i.e. µt+h|t+ constant. However, if we
have conditional heteroscedasticity, then the constant is time-varying and the
result looses its strength. See Granger (1969) [40] for the simple Gaussian
case and Christoffersen & Diebold (1997) [15] for the conditionally Gaussian
approach.

Delving further into forecast assessment with other loss functions, Elliott,
Komunjer & Timmermann (2005) [26] consider a class of loss functions such as
those that are non-quadratic, non-symmetric, etc.

L(Y − f) = [α+ (1− 2α)× 1(Y − f < 0)]|Y − f |p

With the goal of making their tests for forecast efficiency more robust, the
authors study properties of optimal linear forecasters ft+h| = θ′Xt. They
characterise features features of forecast errors and then see if these features
are satisfied in some regressions.

5.2.3 Estimation
This relatively short subsection deals with estimating parameters for use in
forecasting models. Two questions may be asked:

1. What estimator should you use? MLE? Others?

2. Should you use real-time data?

We will consider each question in turn, starting with the first. Let us assume
an AR(1) model for GDP growth, which has been found for most countries to be
approximately true in the data, for instance with the autoregressive parameter
of about 0.3:

yt = φyt−1 + εt (5.7)

To achieve the goal of forecasting yt+2, we set the optimal forecast ft+2|t = βyt
where β = φ2. As for methods to forecast yt+2, one way is is to use the
‘iterated’ method of estimating φ from (5.7) and using

f̂ iteratedt+2|t = φ̂2yt

2Exercise: prove this claim.
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Lag Length Horizon
3 6 12 24

AR(4) 0.99 0.99 1.00 1.05
AR(12) 1.01 1.01 1.03 1.10
AR(BIC) 0.98 0.97 0.99 1.05
AR(AIC) 1.00 1.01 1.02 1.09

Table 5.1: Relative pseudo-out-of-sample MSE

while the alternative is to employ the ‘direct’ approach of estimating β from

yt = βyt−2 + ut

and using
f̂directt+2|t = β̂yt

The iterated approach will be preferred if the AR(1) model describes yt since φ̂
is the MLE and is efficient under AR(1). However, if the model is misspecified,
then it may not be the best to predict one period ahead even if we get good
predictions for one period ahead. On the other hand the direct approach will be
preferred if the model is misspecified since while β̂ has larger variance than ˆphi
under the correct specification, it is robust to misspecification (for the class of
forecasts considered). As a rule of thumb, if misspecification is not too bad, the
gains from variance reduction will dominate the losses from misspecification,
in which case the iterated method is to be preferred.

The literature in this area ranges from Cox (1961) [20] to Schorfheide
(2005) [76]. For an empirical comparison, see Marcelino, Stock & Watson
(2006) [62] who use 170 monthly US macro series across the time frame from
1959-2002 and construct pseudo-out-of-sample forecasts (POOS). They de-
scribe their data with an AR and bivariate VAR for forecast period horizons
h = 3, 6, 12, 24 months. Table 5.1 reports the relative POOS MSE, which is a
ratio of sample MSE:

Relative pseudo-out-of-sample MSE =
∑(

edirectt+h
)2∑(

eiteratedt+h
)2

Ratios above one indicate that misspecification is not important so the
iterated method is favoured and vice-versa for ratios below one.

Note from the table that the Bayesian Information Criterion (BIC) tends
to pick a small number of lags, so we may have a case of omitted variable bias
in this case implying that misspecification is important. The direct method
will be better in this case. However, across lag-length methods, the Akaike
Information Criterion (AIC) iterated seems to work the best. So, the iterated
approach is better for all other lag length selections than BIC and AIC leads
to better forecasts than BIC.
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Returning to the second question highlighted at the beginning of this sub-
section, should we use real time data or historical / revised data? There is no
single answer to this question.

Let us consider issues regarding data revisions in y and x from:

yt+h = β′xt + ut+h

Firstly, regarding y, we can ask the question as to what we actually want
to forecast. For example, in 2008, do we want to forecast 2009 values that
are announced in 2009 or do we want to forecast 2009 values when we have
had time to go back to 2009 to see what really happened? That is, we need
to decide whether our goal for forecasting is the first release or final release of
variable(s). Secondly, regarding x, since we are conducting real-time forecasting
using real-time data, it would appear that xinitial should be used in regressions
to estimate β. The crucial question is whether the projection of y on x is the
same as the projection of y on xinitial, which is usually the object of interest.
Letting

x = xinitial + xrevision

we may ask whether revision is ‘news’ or ‘noise’ in the dichotomous sense of
Mankiw, Runkle & Shapiro (1984) [57]. That is, perhaps xinitial and xrevision

may have different stochastic processes.
There are two approaches to answering this question. The first concerns

treating the problem as an ‘errors in variables bias’; instead of projecting y
on z, we are actually projecting y on z∗ where z∗ = z measured with error –
‘attenuation bias’. These two projections are not the same. We can let z =
z∗+noise, or vice-versa. The second approach is to use 2SLS since projecting
y on x is bad even though x may be uncorrelated with the error term. Project
x on z to get x̂ and then project y on x̂ to yield the 2SLS estimate, which will
be consistent. However, one con with this approach that must be mentioned
is that x has more variability. In conclusion, with errors in xrevision, if there
is noise in the revision, then we should run regressions on xinitial, whereas if
there is news in the revision, then we should run regressions on xfinal.

5.2.4 Forecast Assessment

In the first subsection, we will look at evaluating forecasts and forecasters,
but not models. In the second subsection, we will concentrate on forecast
assessment tools in evaluating models using POOS forecasts.

5.2.4.1 Which forecast is optimal?

First we will look at Mincer-Zarnowitz (1969) [66] regressions:

Yt+h = α+ βft+h|t + γWt + ut+h
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If ft+h|t is MMSE forecast, then α = 0, β = 1 and γ = 0. In order to check
of a forecast is optimal, we can test all of these properties or a subset of them.
Three issues regarding inference are in order:

1. When the forecast horizon is greater than one period, i.e. h > 1, errors
ut+h are distributed as MA(h− 1), i.e. with serial correlation under the
null hypothesis. This warrants the use of heteroscedasticity and auto-
correlation consistent standard errors (HAC SEs).

2. If the forecast variable Yt is persistent, e.g. interest rates, say integrated
of order one I(1), then the forecast f will also be persistent (i.e. I(1))
and so we are forced to deal with the problems associated with unit root
regression inference. We can solve this issue rather easily by taking the
difference: (Yt+h − Yt) = α+ β(ft+h|t − Yt) + γWt + ut+h.

3. When we are forecasting far into the future (i.e. when h is large), the
error u will be extremely persistent. Unfortunately, HAC SE work poorly
here; see Richardson & Stock (1989) [69] for more details.

Moving on from Mincer regressions, with respect to combining or ‘encom-
passing’ regressions, let f1 and f2 be two forecasts as before. Then the forecast
combining regression will be:

Yt+h = β0 + β1f
1
t+h|t + β2f

2
t+h|t + ut+h (5.8)

If f1 is the MMSE forecast, then β0 = β2 = 0 and β1 = 1. If we take f1 and
f2 as coming from forecasters one and two, respectively, then when the first
forecaster produces the MMSE forecast, the forecast from the second forecaster
is useless.

Note that these forecast combining regressions will be subject to the same
problems of inference as those faced with Mincer regressions. Also note that
the above implication from regression (5.8) has three degrees of freedom, i.e.
β0 = β2 = 0 and β1 = 1. We can conduct more powerful tests by reducing
the degrees of freedom to two if we impose the more parsimonious restrictions
β0 = 0 and β1 + β2 = 1. This constraint implies

Yt+h − f1
t+h|t = β2(f2

t+h|t − f
1
t+h|t) + ut+h

We can then simply regress the forecast error, which is the left-hand side and
do the test.

Next we shall investigate loss-function tests. Let f1 and f2 be two forecasts
with forecast errors e1 and e2, respectively. We would like to compare risk for
f1 and f2 – which forecast (if any) should be preferred:

E(L(e1)) T E(L(e2))

Let us consider testing using only quadratic loss functions. Allowing e1
t and

e2
t to be the realised forecast errors, we want to test whether

E[(e1
t )2] = E[(e2

t )2]
i.e. E[(e1

t )2 − (e2
t )2] = 0
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To test this, we can use sample moments of differences:

d̄ = 1
T

T∑
t=1

dt

where dt = {(e1
t )2 − (e2

t )2} and check whether d̄ is statistically significantly
different from zero. As before, we encounter similar issues with inference such
as when h > 1 – implying serial correlation – and again this can be treated via
HAC standard errors. For further references, see Diebold & Mariano (1995) [23]
and West (2006) [81] for a history.

Consider loss function tests with many competing forecasts. Let f1 be
the benchmark model (e.g. a random walk) and let fk where k = 1, . . . , n
are n competing models. We want to know whether any of the n competing
models dominate the benchmark. Again, we can make use of sample moments
of differences:

d̄k = 1
T

T∑
t=1

dkt

where dkt = {(e1
t )2 − (ekt )2}. So d̄k is the sample MSE improvement from

model k over the benchmark prediction. A sensible test statistic is the ‘reality
check’ RC = maxk d̄k. The ‘reality’ is that the benchmark model is the right
one and we want to ‘check’ if it is actually the case that this assumption is
correct. White (2000) [82] derives the limiting distribution of RC under the
null hypothesis that the benchmark model is indeed optimal and in so doing,
provides the critical values. Hansen (2005) [44] refines this in that perhaps
maximising RC may not be the best way to proceed because if we instead
throw out bad models, we will be maximising over a lower dimension, which
will change our critical values.

Wrapping up this topic, we will finally consider density forecasts. A den-
sity forecast gives us the probability that something will be in a certain range.
Sometimes forecasts are not point forecasts. However, we may want to ques-
tion whether we have the correct density. Diebold, Gunther & Tay (1998) [22]
provide an approach to evaluated density forecasts. First note that to gener-
ate a Normal number, typically random number generators generate uniform
distributions on the [0, 1) interval and then through a Normal distribution cdf,
they can plug in the generated uniform numbers as arguments to get values
that will be Normally distributed; see diagram in class and note that we can
generate any distribution like this by replacing the Normal cdf with the cdf of
whatever distribution we are interested in. Their key insight is as follows and
essentially goes the other way. Assume Y has cumulative distribution function
F , so U = F (Y ) ∼ U [0, 1] – remember that random number generators often
use Y = F−1(U). Therefore, if Ft+h|t is in fact the conditional cumulative
distribution function of Yt+h|t, then Ut+h = Ft+h|t(Yt+h) should be uniformly
distributed U [0, 1] and Ut+h should be independent of any data from period t
and earlier. Interval forecasts give a 95% confidence interval for GDP growth in
the final quarter of 2008 – see Christoffersen (1998) [16]. From graphs shown in
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class, data obtained should be draws from the predictive distribution function,
which should be monotonic. Then observe that the distribution is different
date-by-date since plugging in realisations of the data into the density should
yield uniform random variables (by an inverse transformation of the predictive
cdf yielding a sequence of uniform random variables) that should be indepen-
dent if h = 1 and have some dependence if h > 1; see graphs in class. So, these
values should be uniform. For one step ahead, we care about the marginals
and could implement say a Kolmogorov-Smirnov test for uniform distributions;
this test requires quite a lot of data points to reject the null hypothesis.

Definition 5.7. Let Fn be the empirical distribution for n iid observations
of the random variable X. The KolmogorovŰSmirnov statistic for a given
cumulative distribution function F (x) is

Dn = sup
x
|Fn(x)− F (x)|

The Kolmogorov-Smirnov test is defined as follows. If F is continuous,
then under the null hypothesis that the sample comes from a hypothesised
distribution F (x) √

nDn
n−→∞−→ K

where K is the Kolmogorov distribution. The goodness-of-fit test or the Kol-
mogorovŰSmirnov test is constructed by using the critical values of the Kol-
mogorov distribution. We can reject the null hypothesis at level α if

√
nDn > Kα

where Kα is derived from

Pr(K ≤ Kα) = 1− α

The asymptotic power of this test is 1.

5.2.4.2 Using forecast assessment tools to learn about models

Concentrating on forecast assessment in evaluating models using POOS, the
most important references for this second subsection are West (1996 [80],
2006 [81]). The main statistical difference between this subsection and the first
subsection is that now we are explicitly accounting for sampling variability in
estimated model parameters. Continuing with the setup, model 1 has forecasts
f1(θ1) and model 2 has forecasts f2(θ2). The forecasts to be evaluated are
based on estimated models; hence, we use the hats: f1(θ̂1) and f2(θ̂2). Unlike
earlier, now that we are dealing with estimated models, rather than true ones,
we encounter extra sampling variability. We must now answer the question:
does model 1 that we do not know forecast better than model 2 that we do not
know. The highlighted parts of the previous sentence emphasise the difference
from the first subsection.
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First, let us consider the POOS forecasting strategy where the sample size
T = R + P (final P periods are used for ‘prediction’ – construction of POOS
forecasts):

(i) Estimate θ from observations 1 : R to get θ̂R – this mimics real time.

(i) Forecast YR+h using data 1 : R and the estimate θ̂R.

then Recursive POOS:

(iii) Estimate θ from observations 1 : R+ 1 to get θ̂R+1.

(iv) Forecast YR+1+h using data 1 : R+ 1 and the estimate θ̂R+1.

or Rolling POOS (convenient / useful in case of instability):

(iii) Estimate θ from observations 2 : R+ 1 to get θ̂R+1.

(iv) Forecast YR+1+h using data 1 : R + 1 and the estimate θ̂R+1, which is
the same as recursive POOS except that θ̂R+1 will be different.

Conceptually important, here we are interested in:

E[L(Y − f1(θ1))] T E[L(Y − f2(θ2))] (5.9)

rather than what we will be interested in shortly:

E[L(Y − f1(θ̂1))] T E[L(Y − f2(θ̂2))] (5.10)

Be aware of the existence of cases for which the left-hand side is less than the
right-hand side in (5.9) but exceeds the right-hand side (5.10). For more, see
exchange rates as random walks for example, Engle & West (2005)[28], Clark
& West (2006) [17] and Rossi (2006) [71]. Here we will focus on comparing
risk, but note that similarly related issues emerge in combining tests.

One complication to be observed is that it is important to know whether
models are nested or non-nested. With nested models, the random walk model
1 is a special case of the AR model 2 where:

Model 1: yt+1 = x′tβ + εt+1

Model 2: yt+1 = x′tβ + z′tγ + et+1

Observe that when γ = 0, model 2 and model 1 are equivalent. With non-
nested models, the random walk model 1 is not a special case of the AR model
2 since there is no way of getting model 1 from model 2, where models are
defined as:

Model 1: yt+1 = x′tβ + εt+1

Model 2: yt+1 = z′tγ + et+1
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Remark: with nested models, the average of models would be nested, while in
the case of non-nested models, the average of models would be nested but the
other two models would be non-nested.

The following based on West (1996) [80] for non-nested models will not
work in nested models. Note that we care about the loss for the true model.
Define model 1 as

Model 1: yt+1 = xtβ + ε

where x is a scalar, h = 1 step ahead (for clarity). Denote xtβ as the true
forecast and εt+1 as the true forecast error. Also, denote xtβ̂t as the estimated
forecast and let the estimated forecast error be given by

Yt+1 − xtβ̂t = ε̂t+1 = εt+1 + xt(β̂t − β)

Define model 2 as
Model 2: yt+1 = ztγ + et+1

Model 1 and model 2 are non-nested. Denote ztγ as the true forecast and et+1
as the true forecast error. Also, denote ztγ̂t as the estimated forecast and let
the estimated error be given by

Yt+1 − ztγ̂t = êt+1 = et+1 + zt(γ̂t − γ)

We would like to know if the risk associated with ε is different from the risk
associated with e, but we only observe estimates ε̂ and ê. It turns out that it
is valid to conduct one of the tests using HAC instead of e’s and ε’s.

As for how we conduct loss function tests, let us first consider non-nested
models. Before we used averages (over the prediction period) of dt = (ε2t − e2

t ).
So, now that we are using estimates we must use d̂t = (ε̂2t − ê2

t ). To see how
the sample averages of d̂t and dt are related, note that:

1√
P

T∑
t=R+1

(ε̂2t − ê2
t ) = 1√

P

T∑
t=R+1

(ε2t − e2
t )

+ 1√
P

T∑
t=R+1

(β̂t−1 − β)2x2
t−1 + 2 1√

P

T∑
t=R+1

(β̂t−1 − β)xt−1εt

+ 1√
P

T∑
t=R+1

(γ̂t−1 − γ)2z2
t−1 + 2 1√

P

T∑
t=R+1

(γ̂t−1 − γ)zt−1et

= 1√
P

T∑
t=R+1

(ε2t − e2
t ) + op(1)

Model 1 turns up in the end of the second line and model 2 turns up in the
end of the third line. The first term in the second and third terms are very
small since we are squaring small numbers and γ̂ ∼ γ since we estimate using
the true number of observations. West (1996) [80] shows the final equality to
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hold when E(εtxt−1) = E(etzt−1) = 0 in addition to extra assumptions. The
critical point here is that

1√
P

T∑
t=R+1

(ε̂2t − ê2
t ) ≈

1√
P

T∑
t=R+1

(ε2t − e2
t )

i.e. there is sampling error if β̂ and γ̂ do not matter. Therefore, we can do loss
function tests like before, even though now we must estimate parameters.

Still considering conducting loss function tests and moving onto nested mod-
els, as before, we have the same identity:

1√
P

T∑
t=R+1

(ε̂2t − ê2
t ) = 1√

P

T∑
t=R+1

(ε2t − e2
t )

+ 1√
P

T∑
t=R+1

(β̂t−1 − β)2x2
t−1 + 2 1√

P

T∑
t=R+1

(β̂t−1 − β)xt−1εt

+ 1√
P

T∑
t=R+1

(γ̂t−1 − γ)2z2
t−1 + 2 1√

P

T∑
t=R+1

(γ̂t−1 − γ)zt−1et

= 1√
P

T∑
t=R+1

(ε2t − e2
t ) + op(1)

With non-nested models,
∑T
t=R+1 (ε2t − e2

t ) ∼ Op(P
1
2 ) dominates the right-

hand side of the above identity. However, with nested models

yt+1 = x′tβ + εt+1

yt+1 = x′tβ + z′tγ + et+1

Under equal loss, the models are the same (i.e. model 1 and model 2 perform
the same), so εt = et and so the first term vanishes:

1√
P

T∑
t=R+1

(ε̂2t − ê2
t ) = 0

+ 1√
P

T∑
t=R+1

(β̂t−1 − β)2x2
t−1 + 2 1√

P

T∑
t=R+1

(β̂t−1 − β)xt−1εt

+ 1√
P

T∑
t=R+1

(γ̂t−1 − γ)2z2
t−1 + 2 1√

P

T∑
t=R+1

(γ̂t−1 − γ)zt−1et

This is a more complicated problem, which McCracken (2000) [64] and Clark
& McCracken (2001) [19] study by analysing the behaviour of the terms on
the right-hand side of the identity. Averaging, the limits tend to be (messy)
functions of normals. So, we can utilise parametric bootstrap methods with
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Model 1 Model 2
MSPE (under H0)

1
P

∑P
t=R+1 ε

2
t+1

1
P

∑P
t=R+1 ε

2
t+1 + 1

P

∑P
t=r+1 (x′tβ̂t)2 − 2 1

P

∑P
t=r+1 εt+1x

′
tβ̂t

Expectation

σ2
ε σ2

ε + E
(

1
P

∑P
t=r+1 (x′tβ̂t)2

)
Table 5.2: MSPE under H0 and expectation

Gaussian errors to approximate the limiting distribution, to compute critical
values and so on.

Clark & West (CW) (2006) [18] are able to avoid falling into the problem
Clark & McCracken (2001) dealt with. They focus on the situation in which f1

is a random walk forecast and when f2 is nested within the random walk. The
first difference of a variable of interest can be denoted by yt, e.g. an exchange
rate.

H0 : yt ∼ mds
H1 : yt can be predicted by xt
Model 1: yt+1 = εt+1

Model 2: yt+1 = x′tβ + εt+1

Let the forecast under model 1 be f̂1
t+1|t = 0 and that under model two be

f̂2
t+1|t = x′tβ̂t. Also, allow the errors under H0 in model 1 to be ê1

t+1 = εt+1

and the errors under H0 in model 2 to be ê2
t+1 = εt+1−x′tβ̂t. The mean square

prediction errors (MSPE) under H0 for model 1 and model 2 and their expec-
tations are given in table 5.2 So, under the random walk (RW) null hypothesis:

E(MSE for RW) = E(MSE for alternative)− E
(

1
P

P∑
t=r+1

(x′tβ̂t)2

)
We do not check whether the errors are equal, but rather, we make the subtrac-
tion above and ascertain if the expectations are equal. We adjust for sampling
error and then we can compare. The random walk forecast does not suffer from
issues of overfitting x′tβ̂t and ought to yield a superior forecast than the alterna-
tive. The ‘overfitting’ term can be estimated because model 2 is contaminated
by sampling error:

E

(
1
P

P∑
t=r+1

(x′tβ̂t)2

)
≈ 1
P

P∑
t=r+1

(x′tβ̂t)2 = 1
P

P∑
t=r+1

(f2
t|t−1)2

Then the CW test will be a standardised version of σ̂2
1−
(
σ̂2

2 − 1
P

∑P
t=r+1 (f2

t|t−1)2
)

where σ̂2
1 and σ̂2

2 denote the POOS MSPE for f1 (RW) and f2. We want to
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know the distribution of this difference:

√
P

(
σ̂2

1 −

(
σ̂2

2 −
1
P

P∑
t=r+1

(f2
t|t−1)2

))
= 1√

P

P∑
t−r+1

εtf
2
t|t−1

Under the null hypothesis εtf2
t|t−1 is a mds so perhaps we should be looking for

a normal limit? No, we must be cautious and we can see why by looking at the
following example where xt = 1, f2

t|t−1 = β̂t−1 = 1
t−1

∑t−1
i=1 yi

H0= 1
t−1

∑t−1
i=1 εi

and εtf
2
t|t−1

H0= 1
t−1εt

∑t−1
i=1 εi. Recall that in the unit root AR model, the

numerator of ρ̂ − ρ is
∑T
t=1 εt

∑t−1
i=1 εi. CW use ‘rolling’ estimates of β based

on R observations to limit this dependence, where R is fixed and not too large.
With this in mind, we will now look at an empirical example from CW where
monthly changes in US $ exchange rates were forecasted for Canada, Japan,
Switzerland and the UK over a POOS period from 1990-2003 with P = 166
and R = 120; also, x = (1, 1-month interest differential). Table 5.3 taken
from Clark & West (2006) [18] gives forecasts of monthly changes in US Dollar
exchange rates.3 Looking at Japan for example, the out-of-sample period is
January 1990 to October 2003. The out-of-sample MSE for the random walk
is 11.32. The out-of-sample MSE for a model in which they regress the change
in exchange rate on a constant term and an interest differential is 11.55. So,
the model with the interest rate differential does not forecast as well since
11.32 < 11.55. However, if the random walk model is true, then the amount
of overfitting can be computed as 0.75; so we can compute the sampling error
by estimating the β from the null hypothesis that the random walk is true and
we subtract to get 0.53, i.e. the model (not as a forecasting tool) would have
done better by about 53 basis points.

The first part we covered on forecast assessment related to evaluating fore-
casts and forecasters and discovering whether

E[L(Y − f1)] T E[L(Y − f2)]

The second part we covered on forecast assessment related to evaluating models
using POOS forecasting and discovering whether

E[L(Y − f1(θ1))] T E[L(Y − f2(θ2))]

Finally, a third part on forecast assessment relates to evaluating forecasting
models using POOS forecasting and discovering whether

E[L(Y − f1(θ̂1))] T E[L(Y − f2(θ̂2))]

Giacomini & White (2006) [37] cover this third topic, though their paper is
is more about forecasting parameters rather than models; see table 5.4. They

3See the paper for more details, including notation.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)
Country Prediction σ̂2

1 σ̂2
2 adj. σ̂2

2-adj. MPSE-adjusted MSPE-normal CCS
sample σ̂2

1 − (σ̂2
2− adj.) σ̂2

1 − σ̂2
2

Canada 1990 : 1– 2.36 2.32 0.09 2.22 0.13 0.04
2003:10 (0.08)

1.78** 0.54†† 3.67
Japan 1990 : 1– 11.32 11.55 0.75 10.80 0.53 -0.23

2003:10 (0.43)
1.24 -0.52 5.23*

Switzerland 1985 : 1– 12.27 12.33 0.96 11.37 0.90 -0.06
2003:10 (0.48)

1.88** -0.13 2.43
U.K. 1985 : 1– 9.73 10.16 0.44 9.72 0.01 -0.43

2003:10 (0.33)
0.03 -1.27 0.78

Table 5.3: Forecasts of monthly changes in US Dollar exchange rates.

Data Forecasting Procedure Forecast
Forecasting Model 1: {xi, yi}ti=1 θ̂1 etc. f1

t+1|t
Forecasting Model 2: {xi, yi}ti=1 θ̂2 etc. f2

t+1|t

Table 5.4: Giacomini & White (2006)

want to discover when using time t information, can they predict which forecast
will have a smaller loss, i.e.

E[L(f1
t+1|t)− L(f2

t+1|t)|gt] T 0

Naturally, they convert this into a GMM problem where their moment condi-
tion is

E[(L(f1
t+1|t)− L(f2

t+1|t))q(gt)] = 0

5.3 Forecasting with many predictors

5.3.1 Motivation

We started this course by introducing the problem of identification, which has
been a theme across the chapters in terms of working with limited information
in macroeconomic time series. However, we have mainly considered models
that have relatively few variables, despite the availability of numerous real
time economic time series. These could be used for monitoring and forecasting
economic phenomena and possibly for estimating single equation models and
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multiple equation models. While this seems to violate the principle of parsi-
mony, there are reasons why we would want to use many time series. Let us
look at four specific circumstances where extra information may be helpful.

1. With economic monitoring or ‘nowcasting’, as well as forecasting, we
may ask if we could switch from small models with forecasts adjusted
using judicial use of extra information to a more scientific oriented system
incorporating as much quantitative information as if possible.

2. With IV estimation, more information may lead to stronger instruments.

3. With DSGE estimation, we may achieve better identification with more
information.

4. Structural VAR could use more information so that innovations span the
space of shocks, e.g. Factor Augmented VAR (FAVAR). We will not cover
this as VAR will be part of Prof Agust́ın Bénétrix’s part of the course.

Dynamic factor models (DFMs) that were developed by Geweke (1977) [35]
and Sargent & Sims (1977) [73] are very useful for this research. The FED in
Chicago uses DFMs for real-time monitoring and forecasting, e.g. Giannone,
Reichlin & Small (2008) [38] and Aruoba, Diebold & Scotti (2009) [3]. Other
applications include some in the area of SVARs such as Bernanke, Boivin &
Eliasz’s (2005) [7] FAVAR and some in the area of DSGEs such as Boivin &
Giannoni (2006) [9]. Interestingly, the new trend in empirical macro of moving
towards using far larger data sets is in line with developments in other sciences,
especially experimental sciences such as life sciences and also in observational
sciences such as astrophysics.

5.3.2 Dimensionality is not always a curse

Dimensionality need not always be a curse; instead, sometimes it can be a
blessing. We will first explore the ‘curse’ part before discussing the ‘blessing’
aspect. A VAR with 100 variables and 8 lags has 1002×8 = 80, 000 coefficients
and a further 100

2 (1+100) = 5, 050 variance parameters. Exploring the negative
consequences for OLS, consider the model:

Yt+1 = δ′Pt + εt+1 t = 1, . . . , T

where P contains n orthonormal predictors (stands for principal components)
so P′P/T = In. The orthonormality makes calculations easy so we do not
need to worry about covariance terms. Pt is strictly exogenous and εt+1 is iid
N(0, σ2

ε ). Let the loss function be quadratic, i.e. L(YT+1, ỸT+1|t) = (YT+1 −
ỸT+1|t)2 and consider the forecast risk or expected loss of OLS. The frequentist
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risk is the expected loss. The forecast risk (how bad on average) is

EL(YT+1, ỸT+1|t) = E(YT+1 − ỸT+1|t)2

= E[(δ̃ − δ)PT + εT+1]2

= E[(δ̃ − δ)′PTP ′T (δ̃ − δ)] + σ2
ε

≈[(δ̃ − δ)′(δ̃ − δ)] + σ2
ε ∵ Pt orthonormal

= R(δ̃, δ) + σ2
ε

where we have defined

R(δ̃, δ) = E[(δ̃ − δ)′(δ̃ − δ)] = Etr[(δ̃ − δ)(δ̃ − δ)′]

which is the frequentist estimation risk that is often called the trace MSE risk
since tr[(δ̃− δ)(δ̃− δ)′] is the trace MSE loss, i.e. the trace of the MSE matrix
of δ̃. Note that we can affect R(δ̃, δ) since we can change the procedures we
use to estimate δ but we cannot do anything about σ2

ε . If we knew δ, we could
simply use δ̃ = δ so R(δ̃, δ) = 0 and EL(YT+1, T̃T+1|t) = σ2

ε . Note that if
δ̃

p−→ δ, then R(δ̃, δ) −→ 0, so the forecast risk would also converge to zero
and the forecast would be first-order efficient; there would be second order risk
due to estimation error. However, if the data set is large, i.e. if n is large,
then OLS is not first-order efficient. This is because P is strictly and εt is iid
N(0, σ2

ε ):

δ̃ − δ ∼ N

(
0,
(

P′P
T

)−1
σ2
ε

)
= N

(
0, In

σ2
ε

T

)

R(δ̃, δ) = Etr[(δ̃ − δ)(δ̃ − δ)′] = Etr[In
σ2
ε

T
] = n

T
σ2
ε

Therefore, the forecast risk of OLS is

R(δ̃, δ) + σ2
ε = (1 + κ)σ2

ε

where κ = n
T . But this means that the OLS forecast risk EL(YT+1, ỸT+1|t) =

(1 + κ)σ2
ε > σ2

ε . If κ ≈ 0, OLS is almost first-order efficient – this is the
case of parsimony (n small relative to T ). If n

T is large, then OLS does not
achieve first-order forecast efficiency. Furthermore, even when n ≥ 3, OLS is
not admissible under the trace MSE loss. According to Stein (1955), there is
a better estimator ˜̃δ with frequentist risk R(˜̃δ, δ) that dominates that of the
OLS, i.e. the risk is at least as good as the OLS for some δ and nor worse for
all δ, uniformly. James & Stein (1960) developed a shrinkage estimator that
dominates the OLS estimator; it does better than the OLS estimator around
δ = 0. Other things that do not achieve first order forecast efficiency include the
following: (i) discarding all but a few regressors so throwing away information;
(ii) allowing only statistically significant regressors; (iii) choosing regressors by
information criteria. So, the curse is not really a curse, but rather it was a case
of not using the right tools – OLS not being the right tool.
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Now let us analyse why using many variables could be a blessing. Improving
upon OLS, remember that we could not do anything about σ2

ε in the forecast
risk, which is R(δ̃, δ)+σ2

ε , but that we could reduce R(δ̃, δ) since it depends on
the estimator and we can choose the estimator. To avoid R2 = 1 forecasting
regression in the limit (regression ESS exploding as T −→∞), we adopt a local
nesting where δi = di√

T
and let {di} (unknown scaled coefficient) be distributed

according to the empirical distribution Gn; if we observed the true {di}, we
would simply construct the empirical CDF of {di}, i.e. Gn, which would be a
step function. Restrict attention to estimators that produce the same forecast
irrespective of the ordering of the regressors – this is known as permutation
equivariance. Let us look at the frequentist risk for such estimators, in partic-
ular the part we can control:

R(δ̃, δ) =
n∑
i=1

E(δ̃i − δi)2 trace MSE loss

=
( n
T

) 1
n

n∑
i=1

E(d̃i − di)2 ∵ δi = di√
T

= κ

∫
E(d̃− d)2dGn(d) permutation equivalence and CDF Gn

= κrGn(d̃) Bayes risk of estimator d̃ wrt Gn

where κ = n
T . Note that the penultimate equality is the expected loss with re-

spect to the empirical CDF, which is a step function CDF. Note that the Bayes
risk RGn(d̃) is the expected frequentist risk where expectations are taken with
respect to a prior distribution. So, we have the result that the frequentist risk
for permutation equivariant estimators turns out to be the same as the Bayes
risk with respect to the empirical CDF of the d’s, i.e. Gn. This is a key result
and highlights a strong relation between Bayesian and frequentist inference. It
says that if we knew Gn, then we could actually compute the Bayes estimator
with respect to Gn, which in turn minimises the Bayes risk over all estima-
tors; however, RGn(d̃) = R(d̃, d), so if we minimise RGn(d̃), then we are also
minimising R(d̃, d). Therefore, the Bayes estimator that uses the prior Gn is
also the optimal frequentist estimator. Obviously, from a subjectivist Bayesian
philosophy, one prior can not be better than another, but if we consider using
a dogmatic prior for forecasting, e.g. that VAR coefficients are always zero,
your opinion would lead to poor forecasts. So, we find a prior that leads to
best forecasts and we minimise the trace MSE loss. Note that the empirical
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Bayes estimator uses the data to choose the prior.4 Summarising:

Frequentist: min
d̃
rGn(d̃) = κ

∫
E(d̃− d)2dGn(d) CDF of di

Bayes: min
d̃
rG(d̃) = κ

∫
E(d̃− d)2dG(d) subjective prior

Empirical Bayes: min
δ̃
rĜ(d̃) = κ

∫
E(d̃− d)2dĜ(d) estimated prior

Robbins (1964) [70] shows that under certain conditions, the empirical Bayes
estimator is asymptotically admissible and asymptotically optimal. Efron &
Morris (1973) [25] show that the shrinkage estimator mentioned earlier by
James & Stein (1960) [50] is an empirical Bayes estimator. Zhang (2003 [84],
2005 [85]) show minimax properties of empirical Bayes estimators. Note that Ĝ
can be parametric or nonparametric. It turns out that asymptotically, empirical
Bayes is minimum risk equivariant (see Edelman (1988) [24] or Knox, Stock &
Watson (2001) [54] for a regression context). While these are strong results,
they have yet to be proven in time series with predetermined predictors. Even
so, they provide a few guidelines:

• Shrinkage, or equivalently Bayes methods can yield good forecasts with
many predictors, where good is defined in terms of a frequentist risk
perspective.

• Bayes methods that have tuned (estimated) parameters are attractive
methods.

• Forecasts with many predictors may actually outperform forecasts built
from no or simply a few predictors.

• Choosing regressors by information criteria (AIC, BIC, etc.) is non-
optimal; this is a very important point.

Another example of why dimensionality may be a blessing relates to dy-
namic factor models (DFM). Let Xt contain n variables that are related to
some unobservable factors Ft with evolution equations:

Xt = ΛFt + et observation equation
Ft = Φ(L)Ft−1 +Gηt state/transition equation

If observed, the factors could be useful for forecasting, but they are not ob-
served. The early approach to dealing with this problem involved fitting these
equations by ML via the Kalman filter. However, a problem with this was that
this approach was limited to small sizes n due to the mushrooming of param-
eters and ML computations in high dimensions. Interestingly, the solution to
this problem arose from the suggestion that perhaps using many series could
improve the estimates of Ft.

4For those interested in books on empirical Bayes work, see Maritz & Lwin (1989) [63],
Gelman, Carlin, Stern & Rubin (2003) [34] and Lehmann & Casella (1998, section 4.6) [56].
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Example 5.8 (Forni & Reichlin (1998)). A simple DFM example involves
letting Ft be a scalar so Λ is a vector with elements λi. Then

Xit = λift + eit

where eit is idiosyncratic (uncorrelated across series). So,

1
n

n∑
i=1

Xit = 1
n

n∑
i=1

(λtFf + eit) = 1
n

n∑
i=1

λtFt + 1
n

n∑
i=1

eit

If the errors uit have a limited amount of dependence across series, then by
LLN, supposing λ’s are positive on average:

1
n

n∑
i=1

Xit
p−→ λ̄Ft

This is a special case where we are able to recover Ft through the cross-sectional
average – an easy nonparametric estimate – as long as n is large, i.e. when
there are lots of X’s. Thus, we do not require the Kalman filter or state spaces,
etc.

All subsequent procedures are based on asymptotic theory for large n as-
suming that n −→∞ typically at a rate relative to T . It is often the case that
n2

T is treated as large in the asymptotics, which makes sense for example in
an application where n = 100 and T = 160. So, by including large n, more
sophisticated procedures than example 5.8 are available for allowing consistent
estimation of tuning priors (also called prior hyperparameters) in forecasting
and for factors within DFMs. This is a very recent area: most of the theory and
all of the empirical work has been carried out in the past 15 years or so. For
macroeconomic modeling, forecasts with many predictors can be made from a
bunch of different models including DFMs and other high-dimensional forecast-
ing methods such as optimal Bayes estimators, hard thresholding, information
criteria, false discovery rate (FDR) methods, large VARs, bootstrap aggrega-
tion or bagging and Bayesian model averaging. We will not cover these models
within this course, but merely mention their existence and the use of large scale
models in terms of using many predictors that can be useful within areas such
as those using FAVAR (SVARs with factors), using factors as instruments and
DSGE estimation.

To conclude, there have been considerable advances towards exploiting large
data sets in the recent literature. Having a large number of variables can be a
blessing though it seems to question the very principle of parsimony; recall the
results as n2

T −→∞. Beyond the scope of this present course, the profession has
accumulated a lot of knowledge regarding DFM estimation and has advanced
many intriguing applications to forecasting, which have been implemented in
real time, e.g. applications to FAVAR, IV estimation and DSGE estimation.
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Chapter 6

Nonlinear Volatility Models

In this chapter, we will consider ARCH/GARCH, Markov Switching and Stochas-
tic Volatility models. These are all nonlinear models, which have be used for
modeling volatilty. Markov Switching models describe discrete regime change,
while the other two are continuous models. Stochastic volatility models allow
the variance of a process to be directly determined stochastically rather than
being modelled in terms of past observations. Stochastic volatility models and
markov switching models each tend to be preferred to ARCH/GARCH models,
while the choice of stochastic volatility models over markov switching models
is essentially an empirical question; see Fernández-Villaverde & Rubio-Ramı́rez
(2010) [30].

6.1 Modeling volatility

We know that most economic time series neither exhibit constant means nor
constant variances. In fact, generally such series display periods of calm fol-
lowed by periods of turbulence or high volatility. It would therefore appear that
homoscedastic or constant variance stochastic variables are less preferable in
these contexts to those reflecting heteroscedastic variance. Volatile series may
have a constant unconditional variance while for some periods the variance is
particularly high. Nonlinear models are necessary when we want to look at
volatility; they are useful in other applications too. In this section, we will dis-
cuss GARCH, Markov-Switching and Stochastic Volatility models, which are
all non-linear models as Harvey (1993) explains in beginning of chapter 8 [46].
Before we begin our study of particular models, let us describe the empirical
facts behind many economic time series.

While formal testing is necessary to provide evidence for visual inspection,
sometimes visual inspection by itself, though generally perilous, can be suffi-
cient. In fact over-testing can be an issue in certain circumstances. For now,
let us consider macroeconomic indicators such as the evolution of real GDP
and some of its components such as real consumption, real government ex-
penditure and real investment in the US. Figures 3.1 through 3.6 in Enders
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(2008:109-12) [27] indicate that these series are not stationary since the sample
mean is not constant, but there is an upward trend over time; there is also a
clear presence of heteroscedasticity. Let us present five stylised facts from the
data.

1. There is a clear upward trend in most of these series.

2. Shocks to these series are typically persistent.

3. Volatility of these series changes over time.

4. Series appear to meander or exhibit random-walk behaviour, though we
need to test if instead there is any mean-reversion for some series say like
real effective exchange rates.

5. Some series comove with other series.

To investigate these issues further, we need to formally test for the presence
of conditional heteroscedasticity (when the unconditional or long-run variance
is constant but there are period where the variance is especially high) or non-
stationarity. Obviously, many series clearly display evidence of both, but for
some series, this is not so obvious. For the rest of this current section, we
will focus on conditional heteroscedasticity. One motivation for studying con-
ditional heteroscedasticity is that asset holders who buy at t and sell at t + 1
want to predict the rate of return and the variance over the period, so they
do not care about the long-run unconditional forecast of variance. So, con-
ditional heteroscedasticity does not imply stationarity to the extent that the
unconditional variance could still be constant in the long-run.

6.2 ARCH & GARCH

There are many ways to model changes in variance, the basic set up being to
consider the series of interest as a sequence of iid random variables εt with unit
variance multiplied by the standard deviation, a factor σt, i.e.

yt = σtεt εt ∼ iid(0, 1)

ARCH models the variance in terms of of past observations, while more direct
approaches model σt as a stochastic process such as an autoregressive process;
an example of the later is the SV model we will discuss later. ARCH is at-
tributed to Engle (1982) [?] who modeled the variance directly in terms of past
observations. The simplest expression of ARCH has

σ2
t = γ + αy2

t−1 γ > 0, α ≥ 0 (6.1)

where the constraints ensure the variance is positive. So, the model specifies a
predictive distribution for yt. When εt is Gaussian

yt = σtεt εt ∼ NID(0, 1) (6.2)
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and the model is conditionally Gaussian, so yt|Yt−1 ∼ N(0, σ2
t ). The name

ARCH originates from the fact that the model exhibits autoregressive condi-
tional heteroscedasticity since the variance has a similar form to the conditional
expectation of the mean in a standard AR(1) process. There are a multitude
of variations on ARCH; see Bollerslev (2010) [10].

While not independent, the observations form a MD sequence and so the
ARCH model has a zero unconditional mean and is serially uncorrelated. The
unconditional variance is given by:

Et−2Et−1(y2
t ) LIE= Et−2[γ + αy2

t−1] = γ + γα+ α2y2
t−2

Continuing like this until time t− J :

Et−J · · ·Et−1(y2
t ) = γ + γα+ γα2 + · · ·+ γαJ−1 + αJy2

t−J

Provided α < 1, we can sum as the infinite geometric progression (letting
J −→∞) to get

V ar(yt) = E(y2
t ) = γ/(1− α) (6.3)

So, the ARCH is WN but not strict WN. Furthermore, while conditionally
Gaussian, it is not unconditionally Gaussian because if it were, then it would
be a linear model. While the unconditional distribution is nonstandard, it is is
symmetric because all odd moments are zero and ICBST if 3α2 < 1, then the
kurtosis is:

3(1− α2)
1− 3α2

which is greater than 3 for α > 0; thus, the ARCH model produces observations
with heavier tails than those coming from a Normal distribution, which is a very
appealing property since many financial time series tend to have distributions
that are heavy tailed. To see the dynamics of the ARCH model, we can take a
look at the ACF of the squared observations:

y2
t = σ2

t + (y2
t − σ2

t )

and use (6.1) and (6.2) to get

y2
t = γ + αy2

t−1 + vt (6.4)

where vt = σ2
t (ε2t − 1). Note that the disturbance term vt is a MD since

Et−1(vt) = σ2
tEt−1(ε2t − 1) = 0

and ICBST vt has constant variance, so it is WN. So, (6.4) shows that the
squared observations follow and AR(1) process and therefore the ACF is given
by

ρ(τ ; y2
t ) = ατ τ = 0, 1, 2, . . .
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Regarding prediction, the conditional expectation of any future observation is
zero, but the LIE can be used to show that the prediction MSE (here it is just
the conditional variance of future observations) is given by

MSE(ỹT+l|T ) = γ(1 + α+ α2 + · · ·+ αl−1) + αly2
T (6.5)

If the series is treated as WN, the prediction would be the unconditional vari-
ance (6.3). As l −→ ∞, (6.5) tends to (6.3), but for small horizons – or lead
times – it could be quite different.

ARCH has the property that the conditional variance depends only on
a single observation. To see why this is unsatisfactory, observe that a high
conditional variance at time t − 1 could generate an observation close to zero
so the conditional variance at time t would be rather small. We generally
expect variance to change more slowly, which requires spreading the memory
of the process over a number of past observations rather than concentrating
the memory to the immediately previous period, i.e. we need more lags:

σ2
t = γ + α1y

2
t−1 + · · ·+ αpy

2
t−p

which is an ARCH(p) and works better when certain restrictions are placed on
the coefficients. For example, a linear decline may be represented through the
constraint:

αi = α{(9− i)/36} i = 1, . . . , 8
which leaves only two free parameters to be estimated. An even better approach
introduces lagged values of σ2

t into the equation as in the following definition.

Definition 6.1. The generalised ARCH (GARCH ) model is given by

σ2
t = γ + α1y

2
t−1 + · · ·+ αpy

2
t−p + β1σ

2
t−1 + · · ·+ βqσ

2
t−q

This is also called the GARCH(p, q) model.

The GARCH(p, q) model was introduced by Bollerslev (1986). For the basic
GARCH(1,1):

σ2
t = γ + αy2

t−1 + βσ2
t−1 γ > 0, α, β ≥ 0, α+ β < 1

Note that all GARCH models are martingale differences and if the sum of
the αi’s and βj ’s is less than one, then the model has a constant finite variance
and so it is white noise. Example 6.2 shows this for GARCH(1,1).

Example 6.2. For the GARCH(1,1):

Et−2Et−1(y2
t ) = Et−2[γ + αy2

t−1 + βσ2
t−1]

= γ + (α+ β)σ2
t−1

= γ + (α+ β)[γ + αy2
t−2 + βσ2

t−2]

if we repeat this infinitely, then when α+ β < 1, we get that:

V ar(yt) = γ

1− α− β
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Next let us look at the ACF of the squared observations of GARCH, which
turns out to be similar to that of an ARMA process, though the correspondence
is not as direct as with the ARCH case. We can follow (6.4) by writing

y2
t = γ +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j + vt

As before, the error term vt = σ2
t (ε2t − 1) is WN. By adding and subtracting

βjy
2
t−j for j = 1, . . . , q, we get that

y2
t = γ +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjy
2
t−j +

q∑
j=1

βj(σ2
t−j − y2

t−j) + vt (6.6)

Rearrange and define p∗ = max(p, q) to get:

y2
t = γ +

p∗∑
i=1

φiy
2
t−i + vt +

q∑
j=1

θjvt−j

where we have defined

φi = αi + βi i = 1, . . . , p ∗ θj = −βj j = 1, . . . , q

So, the ACF of y2
t is the same as that of the ARMA(p*,q) process in (6.6).

With the GARCH(1,1) model, the ACF is the same of an ARMA(1,1) model:

ρ(1) = (1 + φθ)(φ+ θ)
1 + θ2 + 2φθ

ρ(τ) = φρ(τ − 1) τ = 2, 3, . . .

Therefore, if the sum of α and β is about one, the ACF decays slowly re-
flecting that the conditional variance changes slowly. This may happen in
practice, which motivated the introduction of GARCH and it turns out that
GARCH(1,1) with α+ β close to one often fit the data well.

Drawbacks to GARCH include the following: (i) conditional variance can-
not respond asymmetrically to rises and falls in yt that are sometimes observed
in stock returns for instance; (ii) estimated coefficients often violate parameter
constraints and these constraints can severely restrict the dynamics of the con-
ditional variance; (iii) it is difficult to asses whether the conditional variance
shocks are persistent. Nelson’s (1991) [67] exponential ARCH (EGARCH )
overcomes these problems. He assumed that log σ2

t is a function of past εt’s to
keep the conditional variance non-negative:

log σ2
t = γ +

∞∑
i=1

ψig(εt−i) ψ0 = 1

Specifying
g(εt) = ωεt + λ[|εt| − E|εt|]
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allows g(εt) to be a function of the magnitude and sign of εt−1, which in turn
enables σ2

t to respond asymmetrically to rises and falls in yt. Note that when
εt > 0, g(εt) is linear in εt with slope ω + λ, while when εt < 0, g(εt) has slope
ω − λ. EGARCH models are estimated by ML.

We can write a model with a first-order ARCH disturbance as

yt = x′tβ + ut t = 1, . . . , T (6.7)
ut = σtεt εt ∼ NID(0, 1)
σ2
t = γ + αu2

t−1 γ > 0, α ≥ 0

As ut will be WN, the GM theorem implies that OLS of yt on xt will produce
the BLUE of β. However, OLS will be inefficient because disturbances are
not independent; they are merely uncorrelated. An efficient estimator will be
constructed by ML. For a conditionally Gaussian model, the likelihood function
is:

logL(α, γ) = −T2 log 2π−1
2

T∑
t=1

log(γ + α(yt−1 − x′t−1β)2)−1
2

T∑
t=1

(yt − x′tβ)2

γ + α(yt−1 − x′t−1β)2

ICBST the information matrix is block diagonal with respect to the ARCH
parameters γ, α and the regression parameters β.

Definition 6.3. With the ARCH-M model, ARCH effects are present in the
mean of the process, so (6.7) will be

yt = x′tβ + δσt + ut

ARCH-M models are used when expected return partially depends on risk
as is reflected in volatility. We estimate these models by ML. There are many
other versions of ARCH/GARCH we will not get into. We will conclude our
study of ARCH/GARCH with a discussion of estimation and testing.

We estimate ARCH/GARCH models by maximum likelihood (ML). The
joint density of observations is the likelihood:

L = Πtp(yt|Yt−1)

where we have information at time t − 1. For a conditionally Gaussian first-
order ARCH process, p(yt|Yt−1) is Normally distributed with zero mean and
variance given by:

σ2
t = γ + αy2

t−1 γ > 0, α ≥ 0
If we further assume that y0 is arbitrarily fixed equal to zero, then the log-
likelihood function is given by:

logL(α, γ) = −T2 log 2π − 1
2

T∑
t=1

log(γ + αy2
t−1)− 1

2

T∑
t=1

y2
t

γ + αy2
t−1

It turns out that the method of scoring is a feasible procedure for maximising
the likelihood function when dealing with ARCH or GARCH models.
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Remark 6.4 (Method of Scoring). Methods of optimisation that approximate
functions by quadratic forms, hence employing first and second derivatives are
called the Newton-Raphson method or Newton’s method. Taylor expanding the
criterion function f(Ψ) around the minimum of the parameter vector Ψ̃ yields

f(Ψ) = f(Ψ̃) + (Ψ− Ψ̃)g(Ψ̃) + 1
2(Ψ− Ψ̃)2G(Ψ̃) (6.8)

where g(Ψ) is ∂f(Ψ)/∂Ψ and G(Ψ) is the Hessian ∂2f(Ψ)/∂Ψ∂Ψ′. Differenti-
ating (6.8) with respect to Ψ, we get that

g(Ψ) = g(Ψ̃) + (Ψ− Ψ̃)G(Ψ̃) (6.9)

Since g(Ψ̃) = 0 as Ψ̃ is the minimum of f , we can rearrange (6.9) into:

Ψ̃ ≈ Ψ−G−1(Ψ̃)g(Ψ) (6.10)

which suggests the recursion:

Ψ∗ = Ψ̂−G−1(Ψ̃)g(Ψ̂)

where our revised estimate is Ψ∗ and our initial estimate is Ψ̂. More generally
since we do not know Ψ̃, as the scheme progresses, Ψ̂ is the current estimate
and is updated to Ψ∗ via:

Ψ∗ = Ψ̂−G−1(Ψ̂)g(Ψ̂) (6.11)

See example on pages 128-9 in Harvey (1981) [45]. For the log-likelihood, the
Newton-Raphson iteration is:

Ψ∗ = Ψ̂− [D2 logL(Ψ̂)]−1D logL(Ψ̂)

There are many variants of this for ML estimation, exploiting different fea-
tures of the problem, hence yielding more efficient algorithms; e.g. Gauss-
Newton procedure is useful when minimising the sum of squares is equivalent
to maximising the likelihood function. Sometimes it can be more efficient to
maximise likelihood by looking at the expectation rather than the matrix of
second derivatives when maximising likelihood. So, we will get the information
matrix if we multiply by minus one and a modified Newton-Raphson iterative
procedure will be:

Ψ∗ = Ψ̂ + I−1(Ψ̂)D logL(Ψ̂)

This is called the method of scoring procedure. See Harvey (1981:132) for more
details [45].

Let ρ(τ ; y2
t ) denote the ACF of squared observations:

ρ(τ ; y2
t ) =

E[(y2
t − σ2

y)(y2
t−τ − σ2

y)]
E[(y2

t − σ2
y)2] τ0, 1, 2, . . .
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where σ2
y is the variance of a zero mean series yt and let r(τ ; y2

t ) = {ρ(τ)}2 ∀τ
be the sample estimator of ρ(τ ; y2

t ). Then a higher order analog of the port-
manteau statistic (test for randomness) is:

Q(P ) = T (T + 2)
P∑
t=1

(T − τ)−1{r(τ ; y2
t )}2 (6.12)

which is asymptotically χ2
P for Gaussian WN. We can test for ARCH via (6.12).

6.3 Markov-Switching models

Let us now switch over to looking at modeling time series with changes in
regime, specifically Hamilton’s Markov Switching model. Episodes like Mex-
ico’s Tequila crisis in 1992 where the Mexican government discouraged the
use of dollar-denominated accounts in Mexican banks and Argentina’s Corral-
ito crisis in 2001 where the Argentinian government froze bank accounts and
transformed dollar-denominated deposits into peso-denominated deposits at an
artificial exchange rate lead to dramatic breaks in series. One way of model-
ing these phenomena would be to introduce a structural break in the series for
instance:

yt = µ1 +Dt(µ2 − µ1) + φyt−1 + εt

where Dt is a dummy variable that is zero until t = τ and one thereafter.
However, this is not very satisfactory since we cannot plausibly forecast from
such a model to the extent that a change in regime tends not to be a ‘perfectly
foreseeable, deterministic event’, as Hamilton (1994:677)[43] says [43]. Instead,
the regime change is a random variable so for a time series model, we need to
model the probability of switching or the transition law from µ1 to µ2. We let
the unobserved random variable st∗ that we call the state or regime influence
the process, where st∗ = i means the process is in regime i; in the baseline
model, i ∈ {1, 2}. So we would then have:

yt = µst∗ + φyt−1 + εt

To model the time series process for st∗, which is an unbserved variable, re-
member that it takes only discrete values, e.g. 1 or 2 and so it is different
from GARCH and stochastic volatility (defined shortly), which are continuous
models. A Markov chain is a simple model discrete-valued random variables.

Definition 6.5. Let the random variable st take only integer values, say
{1, 2, . . . , N}. Let

P{st = j|st−1 = i, st−2 = k, . . .} = P{st = j|st−1 = i} = pij

This process is called an N -state Markov chain with transition probabilities
{pij}i,j=1,2,...,N that give the probability of state j in the next period given
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state i in the current period, so

N∑
j=1

pij = 1

Definition 6.6. The transition matrix is the N × N matrix P of transition
probabilities:

P =


p11 p21 · · · pN1
p12 p22 · · · pN2
...

... · · ·
...

p1N p2N · · · pNN


where the row j column i element of P is the transition probability pij – e.g.
row 2, column 1 element p12 is the probability that state 2 follows state 1.

Markov chains can be conveniently represented by VAR, but for this course,
we will neither explore this aspect nor forecasting Markov chains; in addition,
we will not go into any depth on reducible Markov chains, ergodic Markov
chains, periodic Markov chains and statistical analysis of iid mixture distribu-
tions, all important topics by themselves. For those interested, you may wish
to consult Hamilton (1994) chapter 22 [43]. The remainder of our discussion
of Markov-Switching models in class follows section 22.4 of that book, which
you should read.

6.4 Stochastic Volatility models

Taylor (1986) [78] provides an early example of the SV model as a flexible
alternative to ARCH and GARCH models for capturing heteroscedasticity in
innovations in time series work. Taylor was interested in incorporating persis-
tent, time-varying volatility in financial returns data as well as accommodating
fat-tailed behaviour. The SV model Taylor used was a simple one:

yt = utβ exp (st/2)
st+1 = φst + vt

where ut ⊥⊥ vt are both Normal random variables with variances 1 and σ2,
respectively. β here clearly represents the model volatility while φ and σ2

control the degree of persistence and variance of shocks to volatility. Regarding
empirical implementation, the nonlinear aspect of the model requires more
complicated methods.

Again, when we model volatility, we may consider certain time series that
have time-varying variances, where the changes seem to be serially correlated,
for instance with groups of more volatile observations occurring on after an-
other. The intuition behind this is that when markets face uncertainty – pos-
sibly due to an international crisis, then it takes time for tranquility to reign
once again, or for prices to settle down. The basic set up for modeling changes
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in variance σ2
t is to let the series be subject to iid unit variance shocks that are

multiplied by a time varying factor, which is the standard deviation:

yt = σtεt εt ∼ IID(0, 1) (6.13)

When σt is modeled by a stochastic process, e.g. an autoregression, the model
is called a stochastic variance model. This contrasts to the ARCH/GARCH
models we studied above where σt is a function of past observations. However,
they are both similar in that they are both an MD sequence even though they
are not independent. This subsection focuses on the case where σt in (6.13)
follows a stochastic process and is an unobserved variable, i.e. we look at
stochastic volatility/variance (SV) models.

SV models appear frequently in finance, especially in generalisations of the
Black-Scholes option pricing theory result. It is very hard to write down the
exact likelihood function and this was their ‘principal disadvantage.’ (Harvey,
1993:281) [46] However, with recent advances in non-linear filtering, this prob-
lem has been greatly overcome; see for example, the work of Jesus Fernández-
Villaverde who makes use of particle filtering to overcome the problem of non-
linearities in estimating the likelihood function. Furthermore, they do not
suffer from many disadvantages of GARCH models.

Rather than directly set up a stochastic process for σ2
t , the stochastic pro-

cess is assumed for log (σt) so that σ2
t is always positive similar to EGARCH.

The general expression for a SV model is as follows:

yt = σtεt σ2
t = exp (ht) t = 1, . . . , T (6.14)

ht = γ + φht−1 + ηt ηt ∼ NID(0, σ2
η) (6.15)

where ηt may be a function of t or may not be.
Looking at the properties of SV models, let assume throughout that ηt ⊥⊥ εt.

Note that ht is strictly stationary if |φ| < 1 in (6.15). Then ht will have mean
γh = γ/(1 − φ) and variance σ2

h = σ2
η/(1 − φ2). Note that the product of

two strictly stationary processes is also strictly stationary, so yt is also strictly
stationary. Therefore, the conditions for stationarity of yt will be those that
guarantee the stationarity of the process generating ht.

Remark 6.7. Observe that yt is WN. Given the independence of εt and ηt,
note that the mean is obviously zero and since E(εtεt−τ ) = 0,

E(ytyt−τ ) = E(εtεt−τ )E[exp (ht/2) exp (ht−τ/2)] = 0

As long as εt is symmetric, all the odd moments of yt are zero, while if εt is
Normal, then the even moments can be obtained in a formulaic fashion using
the following result.

Lemma 6.8. If exp (ht) is log-normal (i.e. ht is Gaussian), then the jth

moment around the origin is:

exp {jγh + 1
2j

2σ2
h}
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From this lemma:

V (yt) = E(ε2t )E{exp (ht)} = exp {γh + 1
2σ

2
h} (6.16)

E(y4
t ) = E(ε4t )E{exp (2ht)} = 3 exp {2γh + 2σ2

h} (6.17)

So the kurtosis is 3 exp {σ2
h}, which is greater than 3 when σ2

h > 0; hence the
model displays excess kurtosis as compared with the normal distribution.

It is easier to investigate the dynamic properties of the model in log y2
t

rather than y2
t . Logarithms of squared observations in (6.14) are given by

log y2
t = ht + log ε2t

When εt ∼ N(0, 1), E(log ε2t ) = −1.27 and V (log ε2t ) = 4.93, so

log y2
t = −1.27 + ht + ε∗t (6.18)

where ε∗t = log ε2t + 1.27. Then log y2
t is the sum of an AR(1) component and

WN and its ACF is given by

ρ(τ ; log y2
t ) = φτ/(1 + 4.93/σ2

h) τ = 1, 2, . . . (6.19)

As log y2
t is equivalent to an ARMA(1,1), its properties are similar to a GARCH(1,1).

For instance, if σ2
h is small and / or φ ∼ 1, then the correlogram of y2

t is very
close to that of an ARMA(1,1) process.

We may generalise the model so ht follows a stationary ARMA process. In
this case, yt is stationary with variance and fourth moment given by (6.16)
& (6.17), respectively. We can work out the ACF of log y2

t from (6.18) along
with the dynamic properties of ht.

Furthermore, we can model εt as a student t-distribution, as we could for
ARCH models. The importance of this can be seen for ARCH in that the kurto-
sis of many financial time-series is greater than that from using a conditionally
heteroscedastic Gaussian process. With the SV model, we can again show that
if ht is stationary, then yt is WN and from the properties of the t-distribution we
get that the formula for V ar(εt) in (6.16) becomes {ν/(ν−2)} exp (γh + 1

2σ
2
h)},

where ν is the degrees of freedom; the kurtosis is 3{(ν − 2)/(ν − 4)} exp (σ2
h).

When εt ∼ t distribution
εt = ζt/κ

1
2
t

where ζt ∼ N(0, 1) and ζt ⊥⊥ νκt ∼ χ2
ν .

∴ log ε2t = log ζ2
t − log κt (6.20)

and1

E(log κt) = ψ(ν/2)− log(ν/2) (6.21)
V ar(log κt) = ψ′(ν/2)

1See Abramowitz and Stegun (1970: 260) [1].
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where ψ(·) and ψ′(·) are digamma and trigamma functions, respectively. So (6.18)
becomes

log y2
t = −1.27− ψ(ν/2) + log (ν/2) + ht + ε∗t

where

E(ε∗t ) = 0
V ar(ε∗t ) = 4.93 + ψ′(ν/2)

The ACF of log y2
t has the same form as before except now ψ′(ν/2) is added

to 4.93 in the expression for ρ(τ ; log y2
t ) in (6.19).

The state space form is particularly helpful in dealing with SV models.
Equations (6.18) & (6.15) make up the measurement and transition equations,
respectively. ICBST ηt and the disturbances ε∗t are uncorrelated, even if ηt and
εt are not. The key problem is that ε∗t in (6.18) is non-Gaussian. The Kalman
filter is therefore inappropriate since it will only yield MMSLEs of the state
and future observations rather than MMSEs.2 Moreover, because the model
is not conditionally Gaussian, we cannot obtain the exact likelihood from the
Kalman filter. One approach is to compute the estimates by treating the model
as if it was Gaussian and maximising the resulting quasi-likelihood function.
Ruiz (1992) [72] shows that there is little gain in efficiency when making the
assumption that εt is Gaussian even when it is true when using this procedure.
So it might make more sense to estimate the variance of ε∗t rather than set-
ting it to 4.93. However, this leads to an identification problem in that when
the distribution of εt is not specified, γh is not identified because the expected
value of log ε2t is unknown. Therefore, the level of volatility is not determined.
Under the assumption that εt follows a t-distribution, the estimated variance
of ε∗t implies a value of ν when set to 4.93 +ψ′(ν/2), which yields the expecta-
tion of log ε2t from (6.20) & (6.21). As an alternative to quasi-ML, the GMM
estimation procedure was employed by Melino & Turnbull (1990) [65]. A final
alternative involves a recent approach using the particle filter; there are even
more sophisticated methods making use of efficient importance samplers, which
are beyond the scope of this course.

We may assume a non-stationary process for the variance such as a random
walk:

ht = ht−1 + ηt η ∼ NID(0, σ2
η) (6.22)

Here log y2
t will be a random walk plus noise. Harvey shows in section 5.3 of

TSM that the optimal predictor is an EWMA of past observations, so there is
a parallel with the IGARCH model where the unconditional variance

ht = γ + αy2
t−1 + (1− α)ht−1

is also an EWMA. The critical difference between the IGARCH and this SV
model is that in the IGARCH model, conditional variance is known exactly,

2Minimum mean square linear estimators (MMSLE) and minimum mean square estima-
tors (MMSE) are defined in chapter 5; see definition 5.1 together with the proof and the
discussion that follow it.
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whereas now the variance is an unobserved component and a better estimate
can be obtained by a smoothing algorithm. Though the model based on (6.22)
doesn’t lead to an exact form of the likelihood (unlike IGARCH), it does contain
one less parameter and can be (relatively) easily estimated by the quasi-ML
procedure mentioned above. Similar to IGARCH, it seems to provide a good
fit to many data sets and it generalises easily to multivariate series.

Example 6.9. See example 1 on page 284 of Harvey (1993) [46].
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Chapter 7

Filtering and Simulation

Most of what we will do in the first two sections pertains to linear filtering
theory. First we study the state space form, which is useful in that linear state
space models allow us to employ Kalman filtering. After discussing Kalman
filters and smoothers, we will look at frequency related filtering, which neces-
sitates a study of the frequency domain approach. In the final section we will
discuss simulation methods and we will explore some non-linear filters.

7.1 State space form and Kalman filters & smoothers

We will first look at the state space form (SSF), which is extremely powerful
as a tool that can be used for time series. Once we write a model in state
space form, we can apply the Kalman filter for prediction and smoothing.
With Gaussian models, the likelihood function can be constructed by prediction
error decomposition via the Kalman filter. This technique can be applied for
instance to exact ML estimation of ARMA and TVP regression models. While
this course concerns itself mainly with univariate time series, the SSF can
be applied to multivariate time series.1 Here, I will present the model for
multivariate time series and stress univariate time series concerns arise.

Definition 7.1. The N ×1 vector of observed variables at time t, yt is related
to the m× 1 state vector αt through a measurement equation:

yt = Ztαt + dt + εt t = 1, . . . , T

where Zt is an N ×m matrix, dt is an N × 1 vector and εt is an N × 1 vector
of serially uncorrelated disturbances satisfying

E(εt) = 0
V ar(εt) = Ht

1Professor Agustin Bénétrix will discuss multivariate models, in particular vector autore-
gression (VAR) models for time series.
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In general we do not observe the elements of αt, but we know that they
are generated by a first-order Markov process also known as the transition
equation:2

αt = Ttαt−1 + ct + Rtηt t = 1, . . . , T (7.1)

where Tt is an m ×m matrix, ct is an m × 1 vector, Rt is an m × g matrix
and ηt is a g × 1 vector of serially uncorrelated disturbances satisfying

E(ηt) = 0
V ar(ηt) = Qt (7.2)

In order to complete the specification of the state space system, we need
two further assumptions:

1. The initial state vector α0 has the properties that:

E(α0) = a0

V ar(α0) = P0

2. The disturbances are mutually uncorrelated across time periods and with
the initial state, i.e.

E(εtη′s) = 0 ∀s, t = 1, . . . , T

E(εtα′0) = 0 E(ηtα′0) = 0 ∀t = 1, . . . , T

Various algorithms will require modifications when the first assumption
is relaxed.

Definition 7.2. We refer to matrices Zt,dt and Ht in the measurement equa-
tions and matrices Tt, ct,Rt and Qt in the transition equation as the system
matrices.

The system matrices are assumed to be non-stochastic, unless explicitly
stated otherwise; hence, while they may change with time, they change deter-
ministically. So, the system is linear and for any t, yt may be expressed as a
linear combination of past and present εt’s and ηt’s and α0.

Definition 7.3. The model is time invariant or time homogeneous if the sys-
tem matrices Zt,dt,Ht,Tt, ct,Rt,Qt do not change over time.

Stationary models form a special case and the transition equation in a time
invariant model is a first-order vector autoregressive process (VAR(1)); see Prof
Bénétrix’s part of the course for more on VAR.

2The disturbance term may be redefined to have covariance matrix RtQtR′t, though the
representation given of the transition equation is typically more natural when ηt is identified
with a particular set of disturbances in the model.
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Example 7.4. The AR(1) plus noise model can be written as a time invariant
state space model where µt is the state:

yt = µt + εt V ar(εt) = σ2
ε

µt = φµt−1 + ηt V ar(ηt) = σ2
η

For any given statistical model, the definition of αt is determined by con-
struction. The elements of α may or may not be identifiable with components
that have a substantive interpretation. The aim of the SSF is to set up αt

such that αt contains all relevant information on the system for time t and
that it achieves this goal by having as small a number of elements as possible.
Importantly, the fact that the transition equation is a first-order process is not
restrictive because higher order processes may easily be cast in the Markov
form.

Example 7.5. For the AR(2), one possible state space representation is as
follows:

yt = (1 0)αt

αt =
[

yt
φ2yt−1

]
=
[
φ1 1
φ2 0

]
αt−1 +

[
1
0

]
εt

Another possible state space representation for the AR(2) model is

yt = (1 0)α∗t

α∗t =
[
yt
yt−1

]
=
[
φ1 φ2
1 0

]
α∗t−1 +

[
1
0

]
εt

However, we do not need to confine ourselves to AR models in order to
explore the SSF. Any ARMA model can be put into SSF; we will see this for
ARMA models towards the end of this subsection. For now, let us consider the
MA(1) model.

Example 7.6. Let us consider the MA(1) model

yt = εt + θεt−1 t = 1, . . . , T

To put this model in state space form, define the state vector αt = (yt, θεt)′
and write:

yt = (1 0)αt t = 1, . . . , T

αt =
[
0 1
0 0

]
αt−1 +

[
1
θ

]
εt

If we let αt = (α1t, α2t)′, then α2t = θεt and α1t = α2,t−1 + εt = εt + θεt−1.
Therefore, the first element in the state is yt, which is extracted by the mea-
surement equation. With this representation, there is no measurement equation
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noise. Also note that there are other state space representations where the di-
mension of the state vector is only one; however, in these representations, the
cost is introducing correlation between the measurement and transition equa-
tion disturbances.

Building on our study of the SSF, we will now concentrate on filtering. Once
the model is in SSF, we can apply the Kalman filter, a recursive procedure for
computing the optimal estimator of the state vector conditional on all currently
available information; see Kalman (1960) [52] and Kalman & Bucy (1961) [53].
Once we reach the end of the series, we can compute the optimal predictions of
future observations. Similarly, we can make use of a backward recursion called
smoothing to calculate optimal estimators of the state vectors at all points in
time using the full sample.

Definition 7.7. Let at denote the optimal estimator of the state vector αt

based on all the observations up to and including yt. Let Pt be the m ×
m covariance matrix of the associated estimation error, also called the mean
square error (MSE) matrix of at:

Pt = E[(αt − at)(αt − at)′]

Remark 7.8. Note that the MSE matrix can’t be called the covariance matrix
of at since elements of the vector we are interested in estimating, αt are random
variables instead of fixed parameters.

Definition 7.9. At time t−1 with at−1 and Pt−1 given, the optimal estimator
of αt is found from the prediction equations

at|t−1 = Ttat−1 + ct (7.3)

and
Pt|t−1 = TtPt−1T′t + RtQtR′t t = 1, . . . , T (7.4)

Note that the corresponding estimator of yt is

ỹt|t−1 = Ztat|t−1 + dt t = 1, . . . , T

Definition 7.10. The prediction error or innovation vector is

vt = yt − ỹt|t−1 = Zt(αt − at|t−1) + εt t = 1, . . . , T

The MSE of the prediction error is:

Ft = ZtPt|t−1Z′t + Ht

We are able to update the estimator of the state as new observations become
available. The prediction error vector vt plays a crucial role in updating – the
further the predictor of observation deviates from its realised value, the bigger
the change that will be made to the estimator of the state.
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Definition 7.11. The updating equations are:

at = at|t−1 + Pt|t−1Z′tF−1
t (yt − Ztat|t−1 − dt) (7.5)

Pt = Pt|t−1 −Pt|t−1Z′tF−1
t ZtPt|t−1 t = 1, . . . , T (7.6)

Definition 7.12. The Kalman filter (KF) is made up of the prediction equa-
tions (7.3) & (7.4) and the updating equations (7.5) & (7.6).

Given the initial conditions a0 and P0, the KF produces the optimal es-
timator of the state as each new observation arrives. After T observations
have been processed, all the information needed to make predictions of future
observations are contained in the estimator aT .

Now that we have defined the KF, let us look at its use in prediction and
smoothing. Starting with prediction, the formula for predicting more than one
step ahead makes use of the updating equations. In particular, the optimal
estimator of the state vector at T + l based on information at time T is:

aT+l|T = TT+laT+l−1 + cT+l l = 1, 2, . . .

with aT |T = aT . The associated MSE matrix is:

PT+l|T = TT+lPT+l−1|TT′T+l + RT+lQT+lR′T+l l = 1, 2, . . . (7.7)

with PT |T = PT . The predictor of yT+l is given by

ỹT+l|T = ZT+laT+l|T + dT+l l = 1, 2, . . .

with prediction MSE given by

MSE(ỹT+l|T ) = ZT+lPT+l|TZ′T+l + HT+l (7.8)

Note that (7.8) can be used to compute prediction intervals when the model is
Gaussian.

Example 7.13. For an AR(1) plus noise model of example 7.4:

ỹT+l|T = φlaT l = 1, 2, . . . (7.9)

So the forecast function dampens exponentially towards zero as in the vanilla
AR(1) model, but it happens to start from an estimator of the unobserved
component µT rather than from the last observation. We get the forecast MSE
from solving (7.7) and substituting in (7.8):

MSE(ỹT+l|T ) = φ2lPT + (1 + φ2 + · · ·+ φ2(l−1))σ2
η + σ2

ε (7.10)

which compares to

MSE(ỹT+l|T ) = 1− φ2l

1− φ2 σ
2
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Now let us apply the KF for smoothing. Remember that the objective
of filtering is to estimate αt given information available at time t while that
of smoothing is to take account of information available after time t. The
smoothed estimator is called the smoother and is denoted by at|T . It is based
on more information than the filtered estimator, so its MSE matrix Pt|T will
be smaller in general than that of the filter estimator PT+l|T . For the linear
model, there are three smoothing algorithms. The first, fixed-point smoothing,
relates to smoothed estimators of the state vector at some fixed point in time;
hence, it yields aτ |t for particular values of τ at all time periods t > τ . Fixed-
lag smoothing is concerned with smoothed estimators for a fixed delay, i.e.
at−j|t for j = 1, . . . ,M , where M is some maximum lag. These algorithms
are both applicable online, while fixed-interval smoothing, which relates to the
full set of smoothed estimators for a fixed span of data is an offline technique,
producing at|T , t = 1, . . . , T ; hence fixed-interval smoothing is the most widely
used algorithm for social and economic data. We focus on this last algorithm
below.

The fixed-interval smoothing algorithm is a backward recursion initiated
with aT and PT from the KF. The equations are the following:

at|T = at + Pt ∗ (at+1|T −Tt+1at − ct+1)
Pt|T = Pt + Pt ∗ (Pt+1|T −Pt+1|t)Pt∗′

where Pt∗ = PtT′t+1P−1
t+1|t t = T −1, . . . , 1, aT |T = aT and PT |T = PT . The

algorithm requires the storage of at and Pt for all t in order that they can be
combined with at+1|T and Pt+1|T . Note that state space smoothing algorithms
are more general than the classical signal extraction problem because they
can be used for finite samples and for systems that are not necessarily time
invariant.

Initialisation of the KF is critical. When the state follows a stationary pro-
cess, the initial conditions for the KF are given by its unconditional mean and
variance. In example 7.13 with the AR(1) plus noise model, the unconditional
mean is zero and the unconditional variance is P0 = σ2

η/(1 − φ2). Moving to
the more general case of a stationary, time invariant transition equation of the
form (7.1) & (7.2), the mean and unconditional covariance matrix are given
by:

a0 = (I−T)−1c (7.11)
vec(P0) = [I−T⊗T]−1vec(RQR′) (7.12)

This remains valid even if the matrices Zt, Ht and dt are not time invariant.
When the state does not follow a stationary process, the initial conditions must
be estimated from the observations and there are two approaches for this. One
approach is to assume that α0 is fixed, which implies that its distribution is
degenerate since P0 = 0. Elements of α0 must be estimated being treated
as though they are unknown model parameters since α0 is unknown. The
other approach is to assume α0 is random and has a diffuse distribution with
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covariance matrix P0 = κI where κ −→ ∞. However, this means that we
know nothing about the initial state, so starting values are constructed from
the initial observations, effectively.

Example 7.14. Say φ = 1 in example (7.13) so µt follows a random walk.
Then the KF equations produce a1, the estimator of µ1, which is given by

a1 = a0 +
P0 + σ2

η

P0 + σ2
η + σ2

ε

(y1 − a0)

Associated with this is the MSE, given by

P1 = P0 + σ2
η −

(P0 + σ2
η)2

P0 + σ2
η + σ2

ε

As P0 −→ ∞, a1 = y1 and P1 = σ2
ε , independently of the value of a0. So, a

diffuse prior for µ0 produces the same result as directly using y1 as an estimator
of µ1 having an associated estimation error associated of

E[(y1 − µ1)2] = E(ε2t ) = σ2
ε

We can initiate the KF with κ being a large, finite number and doing so
will produce an approximation to the filter that would be found with diffuse
initial conditions. However, this is not very satisfactory, especially since large
numbers within the filter tends to lead to numerical instability.3

Let us now look at Gaussian models and the likelihood function, which
can be constructed from the prediction errors from the KF that is relatively
straightforward to derive in Gaussian models. In Gaussian state space models,
εt, ηt and α0 are Normally distributed. Now we will derive the KF.

The initial state is Normally distributed and has mean a0 and covariance
matrix P0. Note that at t = 1, the state vector is

α1 = T1α0 + c1 + R1η1

So, α1 is a linear combination of a vector of constants and two vectors of
random variables, which both have (multivariate) Normal distributions and so
α1 is also Normal with a mean and a covariance matrix of

a1|0 = T1a0 + c1

P1|0 = T1P0T′1 + R1Q1R′1

where a1|0 is the mean of the distribution of α1 conditional on the information
available at time t = 0. To derive the distribution of α1 conditional on y1,
write

α1 = a1|0 + (α1 − a1|0) (7.13)
y1 = Z1a1|0 + d1 + Z1(α1 − a1|0) + εt (7.14)

3Ansley & Kohn (1985) and DeJong (1991) have created algorithms that overcome these
problems.
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Equation (7.14) is a re-arrangement of the measurement equation. From (7.13)
& (7.14), it can be seen that (α′1,y′1), which is Normally distributed, has a mean
and a covariance matrix that are given by[

a1|0
Z1a1|0 + d1

]
and

[
P1|0 P1|0Z′1

Z1P1|0 Z1P1|0Z′1 + H1

]
From the properties of the multivariate distribution, the distribution of α1
conditional on a realised value of y1 is multivariate normal with mean and
covariance matrix given by

a1 = a1|0 + P1|0Z′1F−1
1 (y1 − Z1a1|0 − d1)

P1 = P1|0 −P1|0Z′1F−1Z1P1|0

where
F1 = Z1P1|0Z′1 + H1

The KF is obtained by repeating the above steps for t = 2, . . . , T . Note that we
can interpret at and Pt as the mean and covariance matrix of the conditional
distribution of αt. This conditional mean is the MMSE of αt and if at is
regarded as an estimator rather than an estimate, then at minimises the MSE
where expectation is taken over all the observations in the information set
rather than being conditional on a particular set of values. Therefore, the
conditional mean estimator is the MMSE of αt.

As the expectation of the estimation error is zero, the estimator at is unbi-
ased. This property is usually referred to as unconditional unbiasedness since
the expectation is taken over all observations in the information set. Note also
that Pt is the unconditional error covariance matrix associated with at since
it is independent of the observations, i.e. the expectation

Pt = E[(αt − at)(αt − at)′]

does not need to be conditional on the realised observation up to and including
time t.

However, when εt and ηt are non-Normal, it is no longer the case in general
that the KF produces the conditional mean of the state vector; although, if
we look at estimators that are linear combinations of observations, then at is
MMSLE of αt based on observations up to and including time t and is un-
conditionally biased the the unconditional covariance matrix of the estimation
error is Pt, given by the KF.

Finally note that the above points apply identically to at|t−1 and Pt|t−1. In
addition, the conditional mean of yt at time t−1, viz. ỹt|t−1 may be interpreted
as the MMSE of yt in a Gaussian model and otherwise is the MMSLE.

Regarding estimation via maximum likelihood, system matrices in state
space models typically depend on unknown parameters, say the n × 1 vector
Ψ called hyperparameters.

Example 7.15. With the AR(1) plus noise model of example 7.4, the hyper-
parameters are σ2

η, φ and σ2
ε .
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To estimate the hyperparameters – via maximum likelihood – we use the
Kalman filter to construct the likelihood function and maximise this using some
numerical optimisation procedure. For a multivariate model, the joint density
of a set of T observations expressed in terms of conditional distributions is

L(y; Ψ) = ΠT
t=1p(yt|Yt−1)

where we let p(yt|Yt−1) be the distribution of yt conditional on the information
available at time t− 1, i.e. Yt− = {yt−1,yt−2, . . . ,y1}. Recall that conditional
on Yt−1, αt ∼ N(at|t−1,Pt|t−1). The measurement equation is

yt = Ztat|t−1 + Zt(αt − at|t−1) + dt + εt

from which it is clear that the conditional distribution of yt is Normal, having a
mean of ỹt|t−1 = Ztat|t−1+dt and a covariance matrix of Ft = ZtPt|t−1Z′t+Ht.
Thus, for a Gaussian model, the log-likelihood function is

logL(Ψ) = −NT2 log 2π − 1
2

T∑
t=1

log |Ft| −
1
2

T∑
t=1

v′tF−1
t vt (7.15)

where vt denotes the vector of prediction errors, i.e.

vt = yt − ỹt|t−1 = Zt(α− at|t−1) + εt t = 1, . . . , T

Equation (7.15) is called the prediction error decomposition form of the likeli-
hood.

We can reparameterise a univariate model so Ψ = (Ψ∗′, σ2
∗)′ where we let

Ψ∗ be a vector of n− 1 parameters and a scale factor σ2
∗ (usually the variance

of one distribution in the model). The measurement equation is

yt = z′tαt + dt + εt V ar(εt) = σ2
∗ht t = 1, . . . , T (7.16)

where ht is a scalar and zt is an m × 1 vector. The only change we make for
the transition equation is to redefine the covariance matrix of the disturbance
ηt to σ2

∗Qt. The Kalman filter runs independently of σ2
∗, if the initial covari-

ance matrix P0 is also specified up to the factor of proportionality (σ2
∗), i.e.

V ar(α0) = σ2
∗P0. We do this since we can concentrate σ2

∗ out of the likelihood
function, if it is an unknown parameter. Prediction errors are invariant to the
omission of σ2

∗ from the Kalman filter. Their variances are:

V ar(vt) = σ2
∗ft (7.17)

Relative to (7.15), Ft = σ2
∗ft, so:

logL(Ψ∗, σ2
∗) = −T2 log 2π − T

2 log σ2
∗

−1
2

T∑
t=1

log ft −
1

2σ2
∗

T∑
t=1

v2
t

ft
(7.18)
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Differentiating (7.18) this with respect to σ2
∗ noting that vt and ft are inde-

pendent of σ2
∗ and putting this equal to zero yields

σ̃2
∗(Ψ∗) = 1

T

T∑
t=1

v2
t

ft
(7.19)

where σ̃∗(Ψ∗) is the ML estimator of σ2
∗ given the value Ψ∗. Substituting

σ̃∗(Ψ∗) into (7.18) yields the concentrated log-likelihood function

logLc(Ψ∗) = −T2 (log 2π + 1)− 1
2

T∑
t=1

log ft −
T

2 log σ̃2
∗(Ψ∗)

We can either maximise this with respect to the elements of Ψ∗ or minimise
the sum of squares function

S(Ψ∗) =
(
ΠT
t=1ft

) T∑
t=1

(
v2
t

ft

)
Example 7.16. The AR(1) plus noise model in example 7.4 can be reparam-
eterised by allowing σ2

ε to be σ2
∗:

V ar(εt) = σ2
ε V ar(ηt) = σ2

ε q

Thus, Ψ∗ contains only q, which is the signal to noise ratio. Note that the
Kalman filter depends only on q with the initial conditions such that instead
of P0 = σ2

η

1−φ2 , we have
P0 = q

1− φ2

So, the Kalman filter can be initialised with the mean and covariance ma-
trix of the unconditional distribution of αt when αt is stationary. With non-
stationary state vectors, we can form a likelihood from all T prediction errors
as in (7.15) only if we have prior information where α0 has a proper distribu-
tion with a known mean a0 and bounded covariance matrix P0. Such an initial
state has a diffuse prior. Typically if the state vector has d non-stationary
elements, then a proper distribution for the state can be constructed at time
t = d using the first d observations. Then summing (7.18) from t = d + 1
instead of t = 1 gives the joint density function of yd+1, . . . , yT conditional on
y1, . . . , yd.

Example 7.17. If the parameter φ in example 7.4 is not necessarily less than
one in absolute value and if σ2

ε is zero so there is no measurement error, then we
can construct a Gaussian likelihood function conditional on the first observation
and the ML estimator is given by regressing yt on yt−2 for t = 2, . . . , T . If
σ2
ε 6= 0, then using a diffuse prior for µ0 implies that µ1 will have the proper

distribution
µ1 ∼ N(y1, σ

2
ε )

180



c©Michael Curran

Then we can construct the likelihood from the prediction error decomposi-
tion (7.18) with the summation running from 2 to T instead of from 1 to T .

Instead to handle the initialisation problem if we treat α0 as fixed param-
eters to be estimated, then we can concentrate these parameters out of the
likelihood. However, the properties of these estimators are not as appealing as
those from the diffuse prior approach. Moreover, the diffuse prior likelihood
is the marginal likelihood for the model holding α0 fixed. Generally, marginal
likelihood is recommended with models having nuisance parameters.

Example 7.18. Continuing from example 7.4, assume again that φ is not
necessarily less than one in absolute value and assume that σ2

ε = 0. Let y0 be
an unknown parameter. The likelihood function will be

logL(φ, σ2
η) = −T2 log 2π − T

2 log σ2
η −

1
2σ2

η

T∑
t=1

(yt − φyt−1)2

Note that the ML estimator of y0 is y1
φ , while the ML estimator of φ does not

change. All that changes here is that the estimator of σ2
η is now divided by T

rather than by T − 1. If we instead assume that σ2
ε 6= 0 and assume φ = 1, the

estimate of q displays some troublesome characteristics when µ0 is treated as
an unknown parameter.

Considering residuals and diagnostic checking, we know that in a Gaussian
model, the innovations vt ∼ NID(0,Ft), t = 1, . . . , T . Therefore, the stan-
dardised residuals F−

1
2

t can be useful for diagnostic checking; however, if system
matrices contain unknown hyperparameters replaced by estimators, then we do
not necessarily have exactly that vt ∼ NID(0,Ft), t = 1, . . . , T . With a uni-
variate model formulated as in (7.16) having d non-stationary elements in the
state, from (7.17) we get that

ṽt = vt√
ft
∼ NID(0, σ2

∗) t = d+ 1, . . . , T

Without the normality assumption, the mean of vt is 0 and the covariance
matrix at time t is Ft; innovations are uncorrelated across time. While other
residuals that can be constructed will not enjoy the independence property of
the innovations, they can be useful diagnostics. For instance, we can detect
outliers and structural breaks by looking at the estimator of the measurement
equation noise, εt calculated from the smoother as

ε̃t|T = yt − Ztat|T − dt

and the estimator the transition equation noise, ηt calculated from the smoother
as

η̃t|T = at|T −Ttat−1|T − ct t = 1, . . . , T
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Remark 7.19. The state space framework handles missing observations prob-
lems with ease, e.g. if an observation is missing at time t = τ , then

at = at|t−1 and Pt = Pt|t−1

The prediction and updating equations can be applied where the primer yields
a two-step ahead predictor and the latter can be used once yt+1 becomes
available. The smoother estimates the state at time τ . So, we can compute
the estimator of the missing observation along with its MSE. The likelihood
function is computed as standard with innovations from the Kalman filter,
except that there will be no innovation associated with the missing observation.
There will be no conditional distribution at time τ and the distribution at time
τ + 1 will be conditional on the information at time τ − 1.

Example 7.20. With the AR(1) plus noise model, the distribution of yτ+1|Yτ−1
will be normal with mean φ2aτ−1 and variance φ4Pτ−1 + (1 +φ2)σ2

η +σ2
ε . This

follows from (7.9) & (7.10).

Remark 7.21 (Remark 7.19 continued). We can generalise the results to any
linear Normal state space model for any number of missing observations (and
where they are located). So, if m consecutive observations are missing, then
the mean and variance of an m+1-step ahead predictive distribution will taken
into the likelihood. In addition, the Kalman filter can deal with cases where
observations are aggregated intertemporally and where we can only observe
the aggregate, e.g. if a flow variable (national income say) has some annual
observations and some quarterly observations, we can solve this by extending
the state vector to include a variable that is able to cumulate the series at
points where the series is unobserved; this phenomenon of quarterly observa-
tions following annual observations is inherent in many national income and
product accounting data sets internationally and is an issue most empiricists
must deal with. The state space approach is capable of handling other data
irregularities too, such as when there are data revisions by government agencies
to time series.

We will conclude our section on state space forms by working through an
example – an application to ARMA models. We can construct an exact likeli-
hood function of an ARMA model via the Kalman filter. First for ARMA(p, q),
by defining

m = max(p, q + 1)

we can write the ARMA(p, q) as

yt = φ1yt−1 + · · ·+ φmyt−m + εt + θ1εt−1 + · · ·+ θm−1εt−m+1 (7.20)

where unless p = q+1, some coefficients will be zero. We can represent (7.20) in
a Markovian way by defining αt to be an m×1 vector following the multivariate
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AR(1) model:

αt =


φ1
φ2
... Im−1

φm 0′

αt−1 +



1
θ1
...
...

θm−1

 εt
which can be see to be a transition equation (7.1)-(7.2) where Tt and Rt are
constant and Qt = σ2. We can easily recover the original ARMA model since
the first element of αt is equal to yt, which can be seen by repeated substitution;
the measurement equation extracts the first element of the state vector; so:

yt = zt′αt t = 1, . . . , T

where we define z′t = (1 0m−1
′)′. The disturbance term is zero unless the model

includes measurement error.

Example 7.22 (MA(1)). When the model is stationary, we get the initial con-
ditions for the state from (7.11) and (7.12) and the likelihood via the Kalman
filter in the form (7.18). Looking at an MA(1), the transition equation is

αt =
[
0 1
0 0

]
αt−1 +

[
1
θ

]
εt

and the initial state vector is a0 = a1|0 = 0. As αt = (yt, θεt)′, the initial
matrix P0 = P1|0 is

P1|0 = P0 = 1
σ2E(αtαt

′) =
[
1 + θ2 θ
θ θ2

]
The first prediction error is v1 = y1 and f1 = 1 + θ2. Updating, we get

a1 =
(
y1
θy1

1+θ2

)
and P1 =

(0 0
0 θ4

1+θ2

)
We get the following prediction equations for α2:

a2|1 =
(

y1θ
1+θ2

0

)
and P2|1 =

(
θ4

1+θ2 0
0 0

)
+
(

1 θ
θ θ2

)
=
( 1+θ2+θ4

1+θ2 θ

θ θ2

)
∴ v2 = y2 −

θy1

1 + θ2

and f2 = 1 + θ2 + θ4

1 + θ2
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Further repetition reveals that the Kalman filter essentially computes the pre-
diction errors from the following recursion:

vt = yt −
θvt−1

ft−1
t = 1, . . . , T

where we initialise v0 = 0 and define

ft = 1 + θ2t

1 + θ2 + · · ·+ θ2(t−1)

Finally, note that while there are efficient filtering algorithms for ARMA
models, computing the exact likelihood is always more time consuming than
computing the conditional sum of squares (CSS). Moreover, given the availabil-
ity of analytic derivatives for the CSS case, we can carry out numerical opti-
misation more efficiently. Nonetheless, exact ML enjoys statistical advantages
especially when MA parameters lie near or on the boundary of the invertibility
region.

7.2 Frequency Domain Approach

In order to study frequency-related filters, we will now shift focus to frequency
domain time series. Lots of early research in time series was carried out in
the frequency domain, especially since other sciences contributed here. Today,
while such courses are often left to more advanced masters/PhD courses since
they can form the basis for advanced simulation/filtering time series second year
PhD ‘field courses’ internationally, it seems to be the case that most leading
theoretical econometric research in time series is now conducted within the time
series domain approach as opposed to the frequency domain approach since
most of the issues within the frequency domain approach have been worked out
a long time ago! Most of the spectral preliminaries and applications including
linear filtering theory is relatively old. We will study the frequency domain
approach in order to get a taste of a somewhat complete, chronological, history
of thought approach. This section on frequency domain descriptive statistics is
layed out as follows: (i) a review of complex analysis; (ii) a review of elementary
time-series; (iii) spectral representation theorems of stationary processes; (iv)
spectral properties of filters; (v) multivariate spectra; (vi) spectral estimation;
and further frequency related filtering.

7.2.1 Complex analysis
Data preparation is a critical part of all empirical work. DeJong & Dave
(2011) [21] characterise three steps in this process. Firstly, there must be a
clearly established correspondence between what is being modeled and what
the data measures. The remaining two steps involve removing trends and
isolating cycles. If the model we are looking at (say a business cycle model)
focuses on cyclical behaviour, then we must remove the trend from a time series
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that involves both trends and cycles. Even after removing the trend, sometimes
we must go further to isolate cycles by their recurring frequency. If the model
is supposed to describe patterns of medium run, or business cycle fluctuations
(i.e. 6-40 quarters), then we are not interested in seasonal fluctuations, so
we need to deseasonalise the data. We will return to the discussion of trend
removal in the last chapter (filtering), briefly mentioning three approaches to
trend removal: detrending, differencing and filtering (e.g. Hodrick-Prescott
(HP) filter, band pass filter). Isolating cycles motivates an understanding of
the frequency domain, which in turn begets a digression into complex analysis.4
We will return to discuss filters used to isolate cycles such as the HP filter and
the band pass filter in addition to discussing seasonal adjustment in the chapter
on filtering.

Definition 7.23. An imaginary variable i is such that

i2 = −1

Definition 7.24. A complex variable z ∈ C is one that can be represented as

z = x+ iy

where x ∈ R, y ∈ R and x = Re(z), y = Im(z), where Re and Im stand for real
and imaginary components, respectively. This is the rectangular coordinates
representation of z.

Definition 7.25. The modulus of a complex number z is the distance of z
from the origin: √

x2 + y2 =
√

(x+ iy)(x− iy)
≡ |z|

If |z| = 1, then z can be said to lie on the unit circle.

Definition 7.26. The complex conjugate of z ∈ C, z = x+ iy is x− iy.

Another representation of z is in terms of polar coordinates. Here ω denotes
the radian angle of z, i.e. the distance in radians counterclockwise from the
x-axis to z; see diagram. Here z is represented by

z = |z|(cosω + i sinω) = |z|eiω (7.21)

Proof.
WTS : cosω + i sinω = eiω

Taking first order Taylor series expansions around zero:

eiω ≈ e0 + ie0ω = 1 + iω

4Brown & Churchill (2003) [12] and Palka (1991) [68] are decent undergraduate and grad-
uate references on this topic. Regarding extra references on isolating cycles, see also Sargent
(1987) [75], Harvey (1993) [46], Hamilton (1994) [43] and Kaiser & Maravall (2001) [51].
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cos (ω) ≈ cos (0)− ω sin (0) = 1
sin (ω) ≈ sin (0) + ω cos (0) = ω

∴ cos (ω) + i sin (ω) ≈ 1 + iω

Corollary 7.27.
e−iω = (cos (ω)− i sin (ω))

See figure 6.5 in DeJong & Dave (2011) [21].

Theorem 7.28 (DeMoivre’s Theorem).

zj = |z|jeiωj = |z|j(cos (ωj) + i sin (ωj))

Proof. Proof is trivial, from (7.21).

Definition 7.29. The square summability condition requires that for a se-
quence of complex numbers {aj}∞j=−∞

∞∑
j=−∞

|aj |2 <∞

Definition 7.30. A series {λk}∞k=0 is absolutely summable if
∑∞
i=0 |λk| <∞.

Theorem 7.31 (Riesz-Fischer Theorem). For any sequence of complex num-
bers {aj}∞j=−∞ satisfying the square summability condition, there exists a com-
plex function f(ω) :

f(ω) =
∞∑

j=−∞
aje
−iωj ω ∈ [−π, π] (7.22)

Definition 7.32. The Fourier transform of {aj}∞j=−∞ is f(ω) in (7.22).

Remark 7.33. Given f(ω), the inverse to the Fourier transform yields {aj}∞j=−∞:

aj = 1
2π

∫ π

−π
f(ω)eiωjdω

This is known as the Fourier inversion theorem.

Two properties of Fourier transform relate to additivity of elements and
multiplication by a scalar. For any two complex functions f(ω) and g(ω) such
that

f(ω) =
∞∑

j=−∞
aje
−iωj

g(ω) =
∞∑

j=−∞
bje
−iωj
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we have that

f(ω) + g(ω) =
∞∑

j=−∞
(aj + bj)e−iωj

αf(ω) =
∞∑

j=−∞
αaje

−iωj

i.e. the Fourier transform of the sum of sequences is the sum of the Fourier
transforms of the individual sequences and the Fourier transform of {αaj}∞j=−∞
is α times the Fourier transform of {aj}∞j=−∞.

Now consider
yωt = α(ω) cos (ωt) + β(ω) sin (ωt) (7.23)

where α(ω) and β(ω) are uncorrelated random variables with zero mean and
identical variances. Here ω determines the frequency with which cos (t) com-
pletes a cycle relative to cos (t) as t changes (0 to 2π, 2π to 4π, etc. – t is
fixed so the frequency of cos (t) would be 1). Now consider a time series yt
constructed from a continuum of yωt ’s where ω varies over [0, π]:5

yt =
∫ π

0
α(ω) cos (ωt)dω +

∫ π

0
β(ω) sin(ωt)dω (7.24)

Theorem 7.34 (Spectral/Cramér Representation Theorem). Given the ap-
propriate specifications for α(ω) and β(ω), uncorrelated, zero-mean random
variables with identical variances, any time series yt may be represented as
in (7.24), i.e. yt is represented as resulting from the influence of a continuum
of cyclical components of different frequencies.

Definition 7.35. The spectrum of a time series yt is a tool measuring the effect
of the cyclical components yωt over the continuum [0, π] to the overall variance
of yt. In particular, the spectrum is a frequency decomposition of the variance
of yt. To see this, consider the autocovariance γ(τ) between yt and yt+τ where
E(yt) = µt and γ(0) = V ar(yt). Assuming the sequence {γ(τ)}∞τ=−∞ is square-
summable, the Fourier transform exists by the Riesz-Fischer Theorem and is
given by

fy(ω) =
∞∑

τ=−∞
γ(τ)e−iωt (7.25)

By the Fourier inversion theorem:

γ(τ) = 1
2π

∫ π

−π
fy(ω)eiωtdω (7.26)

The (power) spectrum or spectral density function is defined by

sy(ω) = 1
2πfy(ω) (7.27)

5We can concentrate on [0, π] due to the symmetry of the sine and cosine functions
between t ∈ [0, π] and t ∈ [π, 2π].
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Alternatively, the spectrum can be represented by:

sy(ω) =
(

1
2π

)[
γ(0) + 2

∞∑
τ=1

γ(τ) cos(ωτ)
]

ω ∈ [0, π] (7.28)

Definition 7.36. The Fourier transform with a series of autocovariances (7.25),
i.e. where aτ = γ(τ) is known as the autocovariance generating function for
the time series yt.

Remark 7.37. From (7.26) and (7.27), we can see how the spectrum may be
interpreted as a frequency decomposition of V ar(yt). Note:

γ(τ) =
∫ π

−π
sy(ω)cos(ωτ)dω

So the sequences of autocovariances and the spectrum are two different ways
of looking at yt – time domain in the first case and frequency domain in the
second case, which gives rise to the name for this analysis. When τ = 0:

γ(0) =
∫ π

−π
sy(ω)dω

and the relative importance of fluctuations at different frequencies in influenc-
ing variations in yt can be obtained from comparing the height of sy(ω) for
different values of ω. So, the total variance can also be interpreted as the area
under the spectral density. Again from symmetry of the cosine function and
integrating over only some frequencies:

2
γ(0)

∫ ωj

0
sy(ω)dω = λ(ωj) 0 < ωj ≤ π, 0 < λ(ωj) ≤ 1

λ(ωj) may be interpreted as the proportion of total variance of yt due to fre-
quencies no greater than ωj .

Example 7.38. For the ARMA(p, q):

Φ(L)(yt − µ) = Θ(L)εt

the autocovariance generating function (ACGF) is given by

fy(ω) = σ2Θ(eiω)Θ(e−iω)
Φ(eiω)Φ(e−iω) = σ2Π(eiω)Π(e−iω)

where Π(eiω) represents the sequence of coefficient in the MA(∞) representa-
tion of the series, i.e. Π(eiω) = Θ(eiω)

Φ(eiω) . The spectral density can be derived
from this relationship as:

sy(ω) = σ2

2πΠ(eiω)Π(e−iω)
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Example 7.39. For an AR(1) process:

yt = ρyt−1 + εt εt ∼ N(0, 1)

the lag polynomials are Θ(eiω) = 1 and Φ(eiω) = 1− ρeiω. The ACGF is

fy(ω) = σ2

(1− ρeiω)(1− ρe−iω)

= σ2

1 + ρ2 − ρ(eiω + e−iω)

= σ2

1 + ρ2

∞∑
i=0

(
ρ

1 + ρ2

)i(1 + e2iω

eiω

)i
The spectrum is

sy(ω) = σ2

2π[1− ρe−iω][1− ρeiω] = σ2

2π[1 + ρ2 − 2ρ cos (ω)]

Definition 7.40. The period p of yωt is defined as the number of units of time
necessary for yωt in (7.23) to complete a cycle: p = 2π

ω .

The period helps us to interpret frequency in units of time. Similarly,
1
p = ω

2π is the number of cycles completed by yωt per period.

Example 7.41. For a period representing a quarter, a 10 year (40 quarter)
cycle has an associated frequency of ω = 2π

40 = 0.157. A six quarter cycle has
a frequency of ω = 2π

6 = 1.047 Therefore, business cycle frequencies lie within
the interval [0.157, 1.047].

So far, we have concentrated on theoretical results. What about empirical
counterparts? Obviously, the lowest frequency we have will be once in the entire
sample period we have of yt from t = 1, . . . , T . Therefore, we can map ω1 to 2π

T .
Likewise, the highest frequency would be ω = 2π and the intermediate values
will be 2πj

T , j = 2, . . . , T − 1. The number of periods per cycle is T/j = 2π/ωj ,
with the lowest frequency ω1 corresponding to the highest period T dates (e.g.
days, months, quarters, years, etc.).

Definition 7.42. Denote the sample autocovariance at lag τ by cτ :

cτ = c−τ = 1
T

T∑
t=τ+1

(yt − ȳ)(yt−τ − ȳ)

where

ȳ = 1
T

T∑
t=1

yt τ = 0, 1, . . . , T − 1
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Then the sample counterpart of the population spectral density function called
the sample periodogram is

ŝy(ω) = 1
2π

[
c0 + 2

T−1∑
τ=1

cτ cosωτ
]

The problem with estimating the sample periodogram is that there are
always zero degrees of freedom since we are estimating T parameters (variance
and T − 1 autocovariances) with T observations. Truncation and windowing
have been suggested as remedies for this problem. Truncation is based on a
subset of the first L < T autocovariances; the choice of L is subjective, though
Chatfield (1996) [13] suggests L ≈ 2

√
T . The set of weights {wτ , τ = 0, . . . , L}

called a lag window leads to the revised estimator:

ŝy(ω) = 1
2π

[
w0c0 + 2

L∑
τ=1

wτ cτ cos (ωτ)
]

The Bartlett window is one choice of weights:

ŝy,Bartlett(ω) = 1
2π

[
c0 + 2

L∑
τ=1

w(τ, L)cτ cos (ωτ)
]

w(τ, L) = 1− τ

L+ 1

The Tukey window has wτ = 1
2 [1 + cos(πτ/L)]. The Parzen window has

wk =
{

1− 6[(τ/L)2 − (τ/L)3] τ ≤ L/2
2(1− τ/L)3 else

With the empirical estimate of the spectrum, the variance decomposition may
be approximated via summing the values about the frequencies of interest.

Example 7.43. See example 21.3 in Greene (2011) [42]. This is a very in-
structive example.

High frequency, disaggregated (across time and individuals) data especially
in financial econometrics with microlevel data are generally not smooth and
tricky to analyse, e.g. stock market data. Here, tools of spectral analysis and
the frequency domain have proved useful to analysts.

Remark 7.44. On a computational note, the discrete Fourier transform of the
series of autocovariances used in the both definitions of the spectrum, (7.27)
& (7.28) involves computations on the order of T 2 sets of computations. This is
troublesome for large data sets with series having many thousands of observa-
tions (e.g. daily stock returns). In this case, the fast Fourier transform may be
advantageous as it reduces the computational level to O(T log2 T ). MATLAB
has FFT (fast Fourier transform) algorithms in versions of fft.

Before proceeding further, we will first present a quick review of elementary
time-series to establish notation for the remainder of this chapter.

190



c©Michael Curran

7.2.2 Time-Series Review
The terminology for this section is presented below.

1. {Yt}: a sequence of random variables.

2. ‘Stochastic Process’: the probability law governing {Yt}

3. ‘Realisation’: a single draw from the process, {yt}.

4. ‘Strict stationarity’: the process is strictly stationary if the probability
distribution of (Yt, Yt+1, . . . , Yt+k) is identical to the probability distri-
bution of (Yt, Yt+1, . . . , Yt+k) for all t, τ and k. Therefore, all joint dis-
tributions are invariant to time.

5. ‘Autocovariances’: γt,k = cov(Yt, Yt+k).

6. ‘Autocorrelations’: ρt,k = corr(Yt, Yt+k).

7. ‘Covariance Stationarity’: the process is covariance stationary if µt =
E(Yt) = µ and γt,k = γk for all t and k.

8. ‘White noise’ (WN): a process is called white noise if it is covariance
stationary and µ = 0 and γk = 0 for k 6= 0.

9. ‘Martingale’: Yt follows a martingale process if E(Yt+1|Ft) = Yt, where
Ft ⊆ Ft+1 is the time t information set.

10. ‘Martingale Difference Process’: Yt follows a martingale process if E(Yt+1|Ft) =
0. {Yt} is called a martingale difference sequence or ‘mds’.

11. ‘Lag Operator’: L lags the elements of a sequence by one period, e.g.
Lyt = yt−1, L2yt = yt−2, . . . , Lkyt = yt−k. Note that bLYt = L(bYt) =
bYt−1 if b is a constant.

12. ‘Linear filter’: letting {cj} be a sequence of constants and

c(L) = c−rL
−r + c−r+1L

−r+1 + · · ·+ c0 + c1L+ · · ·+ csL
s

be a polynomial in L. Note that Xt = c(L)Yt =
∑s
j=−r cjYt−j is a

moving average of Yt. Sometimes, we can refer to c(L) as a ‘linear filter’
(see below) and X is called a filtered version of Y .

13. ‘AR(p) process’: φ(L)Yt = εt where

φ(L) = (1− φ1L− · · · − φpLp)

and εt is WN.

14. ‘MA(q) process’: Yt = θ(L)εt where

θ(L) = (1− θ1L− · · · − θqLq)

and εt is WN.
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15. ‘ARMA(p, q)’: φ(L)Yt = θ(L)εt.

16. ‘Wold decomposition theorem’ (e.g. Brockwell & Davis (1991) [11]): sup-
pose Yt is generated by a linearly indeterministic covariance stationary
process. Then Yt can be represented as

Yt = εt + c1εt−1 + c2εt−2 + · · ·

where εt is WN with variance σ2
ε ,
∑∞
i=1 c

2
i <∞ and εt = Yt−Proj(Yt|lags of YT )

so that εt is ‘fundamental’ because εt is given by a linear forecasting rule
where we observe the data.

17. ‘Spectral Representation Theorem’/‘Cramér Representation Theorem’ (a
frequency domain decomposition, e.g. Brockwell & Davis (1991)): sup-
pose Yt is a covariance stationary zero mean process. Then there exists
an orthogonal-increment process Z(ω) such that:

a) Var(Z(ω)) = F (ω)
b) Xt =

∫ π
−π e

itωdZ(ω)

where F is the ‘spectral distribution function of the process’. The ‘spec-
tral density’ S(ω) is the density associated with F . This is an extremely
useful, important decomposition that merits further discussion. The
Wold decomposition theorem started by taking the Y ’s and breaking
them into pieces ε’s that are uncorrelated with each other and they are
homoscedastic – each has variance σ2

ε – and they have time associated
with them, so εt−2 is the forecast error you made at t − 2. This theo-
rem is another decomposition theorem where we start by taking X’s and
breaking them into pieces Z’s, where each piece corresponds to different
frequency components (high, business cycle, low, etc.) that are uncor-
related with each other and strictly periodic and each have their own
different variance – one component corresponding to the business cycle
might have a big variance so realisations from that process will have a
big business cycle Z and another process will have a big low frequency
component so a realisation generated from these will look very trendy.

At this juncture, we will raise some important questions related to the fre-
quency domain literature. We may ask how important are the seasonal or
business cycle components in Yt? Seasonal components tend to spike and fall
in regular patters; business cycle components tend to oscillate about a trend.
Can we measure the variability at a particular frequency? Frequency zero,
i.e. the long run, will be particularly important since this is the essence of
heterocedasticity- and autocorrelation- adjusted (HAC) covariance matrices.
Can we isolate or eliminate the ‘seasonal’ component or ‘business cycle’ com-
ponent? Frequency domain research can highlight the relative importance of
components. Filtering concentrates on what we can do to extract a certain
component. What about in real time? Can we estimate the business cycle or
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‘gap’ component in real time? If we can do this, then perhaps we want to know
how accurate our estimate is. With low frequencies, we can use HAC, robust
SE. Note that in estimating spectra, we estimate the variance component of
the low frequency parts, which correspond to the variance of sample averages.

7.2.3 Spectral representations of stationary processes
In this subsection we consider four models for Yt, viz. a deterministic process, a
stochastic process, a stochastic process with more components and a stochastic
process with even more components. We will soon let Yt be a covariance
stationary stochastic process.

Firstly, let Yt be a deterministic process such as

(a) Yt = cos (ωt)

(b) Yt = a× cos (ωt) + b× sin (ωt)

In the first case, Yt is strictly periodic with a period of 2π
ω , an amplitude of 1

and a starting value of Y0 = 1. In the second case, Yt is strictly periodic with
the same period 2π

ω , an amplitude of
√
a2 + b2 and a starting value of Y0 = a.

We can change ω, we can shift the origin and we can change the amplitude. If
ω is big (high frequency), then the graph repeats often; else, the graph repeats
less often.

Now let us consider the stochastic process:

Yt = a× cos (ωt) + b× sin (ωt)

where a and b are random variables with zero mean and that are mutually
uncorrelated with the same variance ω2. This is all we need to know for spectral
processes. So our (first and second) moments can be given by:

E(Yt) = 0
V ar(Yt) = σ2 × {cos2 (ωt) + sin2 (ωt)} = σ2

Cov(Yt, Yt−k) = σ2{cos (ωt) cos (ω(t− k)) + sin (ωt) sin (ω(t− k))} = σ2 cos (ωk)

So far we have been focusing on one component, i.e. one ω, say seasonal.
What about low frequencies, high frequencies, business cycle frequencies, sea-
sonal frequencies, etc.? We can write a stochastic process that follows more
components as:

Yt =
n∑
j=1
{aj cos (ωjt) + bj sin (ωjt)}

where {aj , bj} are zero-mean, uncorrelated random variables having the prop-
erty that V ar(aj) = V ar(bj) = σ2

j , i.e. heteroscedastic variance that is fre-
quency related. We can let seasonals be more important than business cycle
frequencies by allowing them to have bigger variances σ2

j and so as, bs are then
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more important than abc, bbc. So our (first and second) moments can be given
by:

E(Yt) = 0

V ar(Yt) =
n∑
j=1

σ2
j decomposition of variance

Cov(Yt, Yt−k) =
n∑
j=1

σ2
j cos (ωjk) decomposition of auto-covariances

We can go even further by examining stochastic processes with even more
components. Including all frequencies between zero and π:

Yt =
∫ π

0
cos (ωt)da(ω) +

∫ π

0
sin (ωt)db(ω)

where da(ω) and db(ω) are zero mean random variables that are mutually
uncorrelated, uncorrelated across frequency and with common variance that is
a function of frequency. Remember that time data is still discrete. The variance
function (i.e. how variance depends on frequency) is called the spectrum:

σ2
j = σ2(ω) = S(ω)

Let us change notation for convenience:

Yt = a× cos (ωt) + b× sin (ωt)

= 1
2e

iωt(a− ib) + 1
2e
−iωt(a+ ib)

= eiωtg + e−iωtḡ

where i =
√
−1, eiωt = cos (ωt) + i sin (ωt) from Euler, g = 1

2 (a − ib) and ḡ is
the complex conjugate of g, i.e. ḡ = 1

2 (a+ ib). Likewise

Yt =
∫ π

0
cos (ωt)da(ω) +

∫ π

0
sin (ωt)db(ω)

= 1
2

∫ π

0
eiωt(da(ω)− idb(ω)) + 1

2

∫ π

0
e−iωt(da(ω) + idb(ω))

=
∫ π

−π
eiωtdZ(ω)

where

dZ(ω) =
{

1
2 (da(ω)− idb(ω)) ω ≥ 0

¯dZ(−ω) ω < 0

Note that the mean of dZ is zero since da and db have zero mean. Let
V ar(dZ(ω)) = E(dZ(ω)dZ(ω)) = S(ω) and observe that E(dZ(ω)dZ(ω′)) = 0
for ω 6= ω′ because we assume da and db are uncorrelated across frequency. So
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E(dZ(ω)dZ(ω′)) = 0 implies ω 6= ω′. Now (first and second) moments of Yt
can be given by

E(Yt) = E

{∫ π

−π
eiωtdZ(ω)

}
=
∫ π

−π
eiωtE(dZ(ω)) = 0

γk = E(YtYt−k) = E(YtYt−k) = E

{∫ π

−π
eiωtdZ(ω)

∫ π

−π
e−iω(t−k)dZ(ω)

}
=
∫ π

−π
eiωte−iω(t−k)E(dZ(ω)dZ(ω))

=
∫ π

−π
eiωkS(ω)dω

Observe that when k = 0, γ0 = V ar(Yt) =
∫ π
−π S(ω)dω.

To summarise:

1. S(ω)dω may be interpreted as the variance of the cyclical component of
Y corresponding to frequency ω. As usual, the period of this component
is given by 2π

ω .

2. S(ω) ≥ 0 since S(ω) is a variance.

3. S(ω) = S(−ω). Therefore, plots of the spectrum are typically presented
across the range 0 ≤ ω ≤ π due to this symmetry.

4. We may invert γk =
∫ π
−π e

iωkS(ω)dω to yield

S(ω) = 1
2π

∞∑
k=−∞

e−iωkγk = 1
2π

{
γ0 + 2

∞∑
k=1

γk cos (ωk)
}

So we see that the spectrum is the sum of the autocovariances, which are
easy to compute for WN (zero) – a flat spectrum, i.e. equal to zero.

The long-run variance is S(0), which is the variance of the zero-frequency
or ∞ period component.

S(ω) = 1
2π

∞∑
k=−∞

e−iωkγk =⇒ S(0) = 1
2π

ω∑
k=−∞

γk

Let us examine the important role this plays in statistical inference. Suppose
Yt is a covariance stationary stochastic process with mean µ. Then we have
that

V ar(
√
T (Ȳ − µ)) = V ar

(
1√
T

T∑
t=1

ωt

)

= 1
T
{Tγ0 + (T − 1)(γ1 + γ−1) + (T − 2)(γ2 + γ−2) + · · · 1(γT−1 + γ1−T )}

=
T−1∑

j=−T+1
γj −

1
T

T−1∑
j=1

j(γj + γ−j)
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The last term on the third line goes to zero as j −→∞. If autocovariances are
‘1-summable’ so that

∑
j|γj | <∞, then we have that

V ar

(
1√
T

T∑
t=1

ωt

)
−→

∞∑
j=−∞

γj = 2πS(0)

Sometimes by ‘long-run variance’ we mean 2πS(0) and sometimes we mean
S(0).

7.2.4 Spectral properties of filters

This subsection is broken into two parts: (i) band pass filters and (ii) one-sided
filters. To motivate these, consider estimating the output gap in real time (e.g.
finding the output gap in the last quarter). To get the output gap, we filter the
data to find its trend and then subtract this from the series. Two-sided filters
require data from the future and the past to figure out what the value of the
trend is today. While this is useful if you are conducting historical analysis,
but not if you are engaged in real time analysis. We will look at how we can
modify these two-sided filters so we can work with real time data issues where
we only have data up to the present and we will examine how to quantify our
uncertainty about the current output gap, for example.

Filters are really just moving averages defined by xt = c(L)yt, where we
say that xt is a filter of yt and c(L) = c−rL

−r + · · · + csL
s, where L−r is the

forward operator, so x is a moving average of y having the c’s for weights.6
So, the filter is composed of forward and backward operators. They are called
filters because they filter out what you don’t want, similar to turning on and
off or up and down the volume of different frequencies on your car’s radio, e.g.
adjusting the bass and treble. We will be interested in using c(L) to focus
on seasonal frequencies and business cycle frequencies – we can filter out the
frequency we are looking for. We want to know how c(L) changes the cyclical
properties of y. Suppose that y is strictly periodic:

yt = 2 cos (ωt) = eiωt + e−iωt

with period p = 2π
ω . We put y through the filter to get x, which will also be

strictly periodic because y is strictly periodic. x will be shifted in time because
of the backward and forward operators. Furthermore, due to the presence of
c’s, which generally will not all be ones, x will be dampened or amplified. We
want to find out how much x is shifted in time and how much it is attenuated
or amplified. Two examples of filters, i.e. what x is could be the first difference
of y or the seasonal difference of y. While y is really composed of a bunch of
different ω’s, it is intuitive to start by looking at one component at of y at a

6Older literature used the notation B for backward and F for forward operators. Now,
L+ represents backward operators and L− represents forward operators.
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time. We can represent x as the following:

xt
MA=

s∑
j=−r

cjyt−j

=
s∑

j=−r
cj [eiω(t−j) + e−iω(t−j)]

= eiωt
s∑

j=−r
cje
−iωj + e−iωt

s∑
j=−r

cje
iωj

= eiωtc(e−iω) + e−iωtc(eiω)

where the exponentials in the last line represent y while the c’s are the MA
weights. Note that c(eiω) ∈ C, say c(eiω) = a + ib where a = Re[c(eiω)] and
b = Im[c(eiω)]. We can write this number in polar form as:

c(eiω) = (a2 + b2) 1
2 [cos(θ) + i sin(θ)] = geiω

where we have defined g = (a2 + b2) 1
2 = [c(eiω)c(e−iω)] 1

2 and θ = tan−1 ( b
a

)
=

tan−1
(
Im[c(eiω)]
Re[c(eiω)]

)
; for example, c(L) = c1L + c2L

2 would mean that the sum
would be be c(e−iω) = c1e

−iω + c2e
−iω2. So g is the distance from the origin

to the point (a, b) in the Re− Im space, where θ makes the counter-clockwise
angle from the Re axis. So

xt = eiωtge−iθ + e−iωtgeiθ

= g[eiω[t− θ
ω ] + e−iω[t− θ

ω ]]

= 2g cos
(
ω

(
t− θ

ω

))
So we can see here that the filter c(L) has two effects: (i) it amplifies y by
the factor g and (ii) it shifts y back in time by θ

ω units of time. We will write
g(ω) and θ(ω) to emphasise their dependence on ω. g(ω) is the filter gain or
amplitude gain and θ(ω) is the filter phase or phase shift. g(ω)2 = c(eiω)c(e−iω)
is called the power transfer function of the filter. Note that we have done this
for one component ω, e.g the business cycle frequency; if we do it for another
cyclical component, e.g. the seasonal, we will have different g and θ as they
depend on ω, which will be different. We will now look at g and θ for different
ω. We will look at different filters.

Example 7.45. Consider
c(L) = L2

This filter shifts y back in time by two periods. So

c(eiω) = e2iω = cos(2ω) + i sin(2ω)
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so that we have that

θ(ω) = tan−1
[

sin(2ω)
cos(2ω)

]
= 2ω

so we have that the filter shifts y back in time by θ
ω = 2ω

ω = 2 time periods.
Also note that

g(ω) = |c(eiω)|
= | cos(2ω) + sin(2ω)|

=
√

cos2(2ω) + sin2(2ω)

= 1

So the gain is one.

Example 7.46 (Kuznets Filter). In Sargent’s textbook (1979) [74], he refers to
the Kuznets filter for annual data, which (i) eliminates trends through centered
ten-year differences (see b(L) below) thereby yielding a volatile series and (ii)
smooths out the rest (MA). To smooth out the series, define

a(L) = 1
5(L−2 + L−1 + L0 + L1 + L2)

and to get rid of trends, define

b(L) = (L−5 − L5)

which is like yt+5 − yt−5. The Kuznets filter is

c(L) = b(L)a(L)

We can compute the gain:

g(ω) = |c(eiω)| = |b(eiω)||a(eiω)|

easily for a grid of values through MATLAB. This filter eliminates low frequen-
cies (gets rid of the trend), attenuates high frequencies and amplifies particular
frequencies of about 0.3, which correspond to frequencies of about 20 years. So,
the Kuznets filter effectively ‘turns up the volume’ on 20 year cycles (approx-
imately the period) which are called Kuznets cycles. Note that we get twenty
year cycles even if they are not in the data since we are only turning up the
volume for these frequencies. For instance, we will get these cycles even if
we look at WN. One interpretation is that we have done something that was
seemingly sensible but arguably ultimately wrong. Let us next look at some
‘better’ filters.

Example 7.47 (X-11 Seasonal Adjustment). At the US Bureau of Labour
Statistics in the early 1960s, the statistician Julius Shiskin developed the first
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computer program, the X-1 to automate the process of seasonally adjusting
data. Today, X-11 ARIMA is the standard program, with a few improvements
in X-12 ARIMA and X-13 ARIMA-SEATS versions. X-12 and X-13 can be
downloaded and used for free from http://www.census.gov/.7 Let us focus on
the X-11 since it is simpler to describe and X-12 and X-13 are based on it. The
linear operations in X-11 can be described by

xsat = X11(L)xt

where X11(L) is a two-sided filter that is constructed in multiple steps involving
linear filters:

1. Initial estimate of TC: ˆTC
1
t = A1(L)xt where At(L) is the centered 12-

month MA filter At(L) =
∑6
j=−6 bjL

j with b|6| = 1
24 and bj = 1

12 for
j ∈ {−5, . . . , 5}.

2. Initial estimate of S + I: ŜI
1
t = xt − ˆTC

1
t .

3. Initial estimate of St: Ŝ1
t = S1(L12)ŜI

1
t where S1(L12) =

∑2
j=−2 cjL

12j

with cj as weights from a 3× 3 MA, i.e. 1
9 ,

2
9 ,

3
9 ,

2
9 ,

1
9 .

4. Adjust estimates of S so they approximately sum to zero over any 12
month period: Ŝ2

t = S2(L)Ŝ1
t where S2(L) = 1−A1(L) with the definition

of A1(L) given in step 1.

5. Second estimate of TC: ˆTC
2
t = A2(L)(x1

t − Ŝ2
t ) where A2(L) is a ‘Hen-

derson’ MA filter. 13-term Hendersen MA filter is A2(L) =
∑6
i=−6A2,iL

i

where A2,0 = .2402, A2,|1| = .2143, A2,|2| = .1474, A2,|3| = .0655,
A2,|4| = 0, A2,|5| = −.0279, A2,|6| = −.0194.

6. Third estimate of S: Ŝ3
t = S3(L12)(xt− ˆTC

2
t ) where S3(L12) =

∑3
j=−3 djL

12j

with Dj as weights from a 3× 5 MA, i.e. 1
15 ,

2
15 ,

3
15 ,

3
15 ,

2
15 ,

1
15 .

7. Adjust estimates of S so they approximately sum to zero over any 12
month period: Ŝ4

t = S2(L)Ŝ3
t where S2(L) has been defined in step 4.

8. Final seasonally adjusted value: xsat = xt − Ŝ4
t .

Looking at the gain, this filter effectively turns down the volume on seasonals.
As we said for the Kuznets filter, one interpretation is that we can get things
wrong. So, we would like to be smart about what we are doing and get things
right, but how?

Example 7.48 (HP Filter). The HP filter eliminates trends.
7Typically one uses the X-12 ARIMA program, which is heavily based on X-11. However,

the transition to X-13 ARIMA-SEATS is well underway with most groups inside the US
Census Bureau using the X-13 ARIMA-SEATS to produce seasonal adjustments.
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Let xt = c(L)yt where y has spectrum Sy(ω). We want to find the spec-
trum of X. Since the frequency components of x are simply scaled frequency
components of y, where the scaling is by the factor g(ω)eiθ(ω), we have the
following relation between the spectra of x and y:

Sx(ω) = g(ω)2Sy(ω) = c(eiω)c(e−iω)Sy(ω)

where if g < 1, we have attenuated y and if g > 1, we have amplified it. Since
the spectrum is like the variance, as we are simply scaling the variance of y,
we can easily find the spectrum of x. This is an important formula and it is
useful because it allows us to compute the spectra of ARMA models, say, with
a very simple formula. Furthermore, with heteroscedastic consistent standard
errors that are estimates of the spectra, we can use this formula to figure out
the spectra.

Example 7.49. The spectrum of the WN process εt is:

Sε(ω) = 1
2π

{
γ0 + 2

∞∑
k=1

γk cos(ωk)
}

= σ2
ε

2π

Recall that when yt ∼ ARMA, φ(L)yt = θ(L)εt or yt = c(L)εt with c(L) =
θ(L)
φ(L) . Then the spectrum of y is

Sy(ω) = c(eiω)c(e−iω)Sε(ω)

= σ2
ε

θ(eiω)θ(e−iω)
φ(eiω)φ(e−iω)

1
2π

= σ2
ε

(1− θ1e
iω − · · · − θqeiqω)(1− θ1e

−iω − · · · − θqe−iqω)
(1− φ1eiω − · · · − φpeipω)(1− φ1e−iω − · · · − φpe−ipω)

1
2π

When ω = 0, i.e. at zero frequency:

Sy(0) = σ2
ε

(1− θ1 − · · · − θq)(1− θ1 − · · · − θq)
(1− φ1 − · · · − φp)(1− φ1 − · · · − φp)

1
2π

which is a simple formula for figuring out the long-run variance of this process.

Now let us suppose we want to construct a filter that keeps certain fre-
quencies, say the trend. This is a classical problem in signal processing, i.e.
constructing a band-pass filter. Let c(L) =

∑∞
j=−∞ cjL

j and allow the phase
of c(L) to be zero so there is no shift in time, i.e. c(L) is symmetric: cj = c−j
(treat future and past the same way) and we want to make

gain(c(L)) = |c(eiω)| symm= c(eiω) =
{

1 −ω ≤ ω ≤ ω
0 ω /∈ [−ω, ω]

The gain function will be one from the origin and drop to zero from frequency
ω onwards. So, we only keep frequencies between zero and ω and turn down
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the volume or eliminate the rest. Thus, we have a band-pass filter: we want to
pass a band of certain frequencies. We have constructed a filter c(L) that gives
us this. Note that since c(e−iω) =

∑∞
j=−∞ cje

−iωj , we get the identity cj =
1

2π
∫∞
−∞ eiωjc(e−iω)dω. If we set the gain to one over the desired frequencies,

the integration produces the following weights:

cj = 1
2π

1
ij
eiωj |ω−ω =

{
1
jπ sin(ωj) j 6= 0
ω
π j = 0

Observe that the values of cj , which due to symmetry are both the weight
you put on the the lag of the series j periods ago and the lead of the series j
periods ahead will die out at the rate j−1, so they decline slowly. Furthermore,
if you want everything except say the low frequency (if that was what you
got in the first place with this filter), note that 1 − c(L) passes everything
except for −ω ≤ ω ≤ ω, so 1 − c(L) will be a high pass filter and note that
difference of low-pass filters can be used to pass any set of frequencies. We take
the original series and subtract what we got from our filter. We can get say
business cycle frequencies by subtracting low pass filters and high pass filters
where we define the filters cleverly. Essentially, we are subtracting rectangles
to get whatever rectangles we want. Finally, Baxter and King (1999) [6] show
that ck(L) =

∑k
j=−k cjL

j is an optimal finite order approximation to c(L) in
that the gain of ck(L) is as close (L2−norm) as possible to the gain of c(L) for
a k-order filter; this means that since generally there will be an infinite number
of leads and lags, we can approximate the gain function (best in terms of L2

approximation) where we truncate over a certain number of periods.
What if we want to pass periods less than eight years? We can look at the

gap filter. Periods greater than eight years may be thought of as trends, while
periods less than eight years might be thought of as deviations from trends,
say output gaps. This tends not to die out very quickly in that while most
weight is put around contemporaneous observations, there is still a significant
amount of weight far away and we cannot simply truncate this.

An interesting exercise is to apply band-pass filters to the log of real GDP,
say in the US. Take a plot of the series, its low frequency components, i.e.
the trend (say periods above 32 quarters), business cycle frequencies (periods
between 6 and 32 quarters) and high frequency components (periods below 6
quarters). Each component will look like its frequency: the trend looks like
a trend, the business cycle looks like a business cycle and the high frequency
component certainly will display high frequency. An incorrect interpretation
would be to say that there seems to be repetition every few quarters, say for the
business cycle frequencies because we have reached this result by construction.
What is more interesting is the clearly observed volatility decline, especially
since 1980s.

It is infeasible to use two-sided filters for the present time. For instance, in
2013 if we were asked what would be the output gap for the next 20 years, if
we had access to data on GDP (i.e. perfectly foreseeable), then we could plug
in the data for GDP and use a two-sided filter. What we could do instead is
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to try and use the information we have up to today. The issue therefore with
two-sided filters with weights that die out slowly is the essentially ‘endpoint’
problems. Geweke (1978) [36] showed how to implement a minimum MSE
one-sided filter (estimator) for using data that is available in real time. Let

xt = c(L)yt =
∞∑

i=−∞
ciyt−i

We will use information up to the latest available time period, T . The optimal
estimate of xt given {yj}Tj=1 is

E(xt|{yj}Tj=1) =
∞∑

i=−∞
ciE(yt−i|{yj}Tj=1)

=
0∑

i=−∞
ct−iŷi +

T∑
i=1

ct−iyi +
∞∑

i=T+1
ct−iŷi

where ŷi are unknown – we forecast them and backcasts of yi are also con-
structed from the data {yj}Tj=1. So, we have applied an optimal two-sided filter
to series for which we use actual data for the pre-sample period (best back-
cast is the data itself) and use forecasts for the post-sample period. Geweke
talked about this in the context of seasonal adjustment and it is what X-12
ARIMA does, which is simply X-11 ARIMA applied to series with forecasts
and backcasts appended with ARIMA models. More generally, we can apply
this technique to any models, say AR, VAR, DSGE, etc. We can compute the
errors, i.e. how uncertain we are about the output gap today, since we have the
forecasts from some model, say AR / ARMA / VAR / DSGE models and so
we know the variance and covariance properties. Findley et al (1991) describes
how this is done in X-12. The variance of the error from using {yj}Tj=1 will be

var(xt − E(Xt|{yj}Tj=1)) = var

( ∞∑
i=−∞

ci{E(yt−i|{yj}Tj=1)− yt−i}
)

While Geweke was concerned with the X11 filter, his result is general and
applies to any linear filter, e.g. band-pass, HP, etc. You will find that you get
higher standard errors around the backcasts before you have data and forecasts
after you have data as you would expect.

Let us now look briefly at regressions using filtered data:

yt = x′tβ + ut E(utxt) = 0

which allows our OLS estimates to be consistent. Now let us use some filter
(e.g. first difference / HP / seasonal adjustment). Denote filtered data by:

yfiltered
t = c(L)yt
xfiltered
t = c(L)xt
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where we use the same filter on both. Now write

yfiltered
t = xfiltered

t
′β + ufiltered

t

To use OLS, we need to know if E(xfiltered
t ufiltered

t ) = 0. This holds when x
is strictly exogenous. Note that xfiltered and ufiltered include lagged, current
and future values. For E(xfiltered

t ufiltered
t ) = 0, x and u need to be uncorrelated

at all leads and lags, but this never happens unless say x = 1 or something
trivial. The reasoning is analogous to the argument against using GLS in time
series regression There, we may attempt to correct for serial correlation with
an AR(1) error. But that is equivalent to applying a filter to both sides, which
in turn changes the orthogonality conditions. So, correcting for AR(1) errors
– or other time series errors – may lead to other problems; hence, you should
use heteroscedastic consistent standard errors instead. The takeaway from this
is that when using filtered data or conducting GLS in time series regressions,
you must think rather hard about how and whether to do so.

7.2.5 Multivariate spectra

We will not cover this section in class. This subsection simply extends what we
have done so far to vectors. When yt is a scalar, the spectrum associated with
frequency ω of the process yt is S(ω) = 1

2π
∑∞
j=−∞ λje

−iωj . This represents the
variance of the complex valued Cramér increment dZ(ω) in yt =

∫ π
−π e

iωtdZ(ω).
We can generalise this.

Generalising, let Yt be an n × 1 vector with jth autocovariance matrix
Γj = V (YtY ′t−j) and let S(ω) = 1

2π
∑∞
j=−∞ Γje−iωj so S(ω) will be an n × n

matrix. The spectral representation is the same as above except that dZ(ω)
is an n × 1 complex-valued random vector with associated spectral density
matrix S(ω). Note that S(ω) may be interpreted as a covariance matrix for
the increments dZ(ω). The diagonal elements of S(ω) are the univariate spectra
of the series, while the off-diagonal elements are the ‘cross-spectra’ (covariance
between two increments). Cross-spectra are complex valued and such that
Sij(ω) = ¯Sij(ω). Re(Sij(ω)) is called the co-spectrum and Im(Sij(ω)) is called
the quadrature spectrum. Also:

Coherence(ω) = Sij(ω)√
Sii(ω)Sjj(ω)

Gainij(ω) = |Sij(ω)|
Sjj(ω)

Phaseij(ω) = tan−1
(
−Im(Sij(ω))
Re(Sij(ω))

)
In order to interpret these definitions, consider scalars Y and X with spectra
SY and SX and cross-spectra SXY . Furthermore, consider the regression of Yt
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onto leads and lags of Xt:

Yt =
∞∑

j=−∞
cjXt−j + ut = c(L)Xt + ut

Observe that since u and X are uncorrelated at all leads and lags

SY (ω) = |c(eiω)|2SY (ω) + Su(ω)

In addition, we can see

E(YtXt−k) =
∞∑

j=−∞
cjE(Xt−jXt−k) =

∞∑
j=−∞

cjE(XtXt−k+j) =
∞∑

j=−∞
cjγk−j

where γ represents the autocovariance of X.

∴ SY X(ω) = 1
2π

∞∑
k=−∞

e−iωk
∞∑

j=−∞
cjγk−j

= 1
2π

∞∑
j=−∞

cje
−iωj

∞∑
l=−∞

e−iωlγl

= c(e−iω)SX(ω)

Therefore, the gain and phase of the cross-spectrum is the gain and phase of
c(L).

7.2.6 Spectral Estimation
In this final, brief subsection, we will say a few words about AR/VAR/ARMA
parametric estimation. Let Φ(L)Yt = Θ(L)εt where Y can be a vector and εt
is WN with variance-covariance matrix Σε. The spectral density matrix of Y
is given by:

SY (ω) = Φ(eiω)−1Θ(eiω)ΣεΘ(e−iω)′Φ(e−iω)′−1

Parametric estimators use estimates of the AR and MA parameters and
Σε. For example, consider the VAR(1) model given by (I − ΦL)Yt = εt. The
estimate of the spectral density matrix of Y is given by:

ŜY (ω) = (I − Φ̂eiω)−1Σ̂ε(I − Φ̂e−iω)′−1

7.2.7 Further frequency related filtering
Let us continue with frequency related filtering. Denoting the growth rate of
the time series yt by xt, if the frequency of the data on yt is monthly, then xt
is the monthly growth rate:

xt = 100 · [log (yt)− log (yt−1)]
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So, other than the scale parameter (100), the monthly growth rate xt is ob-
tained from log (yt) by applying the following filter, where L is the lag operator:

xt = (1− L) log (yt) (7.29)

Let Yt be a covariance-stationary time series with absolutely summable auto-
covariances where gY (z) is the ACGF of Y and sY (ω) is the spectral density
function of Y and recall that the spectrum can be expressed as

sY (ω) = 1
2πgY (e−iω)

Now transform Y byXt = h(L)Yt where h(L) =
∑∞
j=−∞ hjL

j and
∑∞
j=−∞ |hj | <

∞. Recall also that the ACGF of Y can yield the ACGF of X through:

gX(z) = h(z)h(z−1)gY (z)

∴ sX(ω) = 1
2πgX(e−iω) = 1

2πh(e−iω)h(eiω)gY (e−iω)

which is the population spectrum of X and substituting sY (ω) into this shows
the following relationship between the population spectra of X and Y :

sX(ω) = h(e−iω)h(eiω)sY (ω)

The filter h(L), which operates on the series Yt effectively multiplies the spec-
trum by the function h(e−iω)h(eiω). The difference operator in (7.29) has a
filter of h(L) = 1− L, so the function h(e−iω)h(eiω) would be given by:

h(e−iω)h(eiω) = (1− e−iω)(1− eiω)
= 1− e−iω − eiω + 1
= 2− 2 · cos(ω)

where the last line follows from observing that

e−iω + eiω = cos (ω)− i sin (ω) + cos (ω) + i sin (ω) = 2 cos (ω)

So, if Xt = (1 − L)Yt, then to find the population spectrum of X at any
frequency ω, we find the value of sY (ω) and then multiply it by 2−2 cos (ω); e.g.
the spectrum at ω = 0 is multiplied by zero, that at ω = π/2 is multiplied by
2 and that at ω = 4 is multiplied by 4. In effect, differencing the data removes
low frequency components and accentuates high frequency components. If on
the other hand Yt is non stationary, then the differenced data (1 − L)Yt will
not generally have a zero population spectrum at ω = 0.

Looking at the year to year growth rates or the percentage change in yt
between t and its value for the same month of the previous year:

wt = 100[log (yt)− log (yt−12)]
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the seasonal difference filter would be h(L) = 1− L12, so

h(e−iω)h(eiω) = (1− e−12iω)(1− e12iω)
= 1− e−12iω − e12iω + 1
= 2− 2 cos (12ω)

The function is zero when 12ω = 0, 2π, 4π, 6π, 8π, 10π, 12π, i.e. it is zero at
frequencies ω = 0, 2π/12, 4π/12, 6π/12, 8π/12, 10π/12, π. Therefore, season-
ally differencing eliminates the low frequency (ω = 0) components of a sta-
tionary process as well as any contribution from cycles that have periods of
12, 6, 4, 3, 2.4 or 2 months.

A slowly evolving trend can be thought of as a low frequency cycle. A
constant trend can be thought of as a cycle with zero frequency. Filters are tools
that can eliminate the influence of cyclical variations at different frequencies.
Earlier when I mentioned trend removal, I said that there were three basic
techniques: detrending, differencing and filtering. To target low frequencies,
we can use detrending filters such as the first-difference and HP filter; to target
seasonal frequencies, we can use seasonal filters, etc.

Definition 7.50. A linear filter applied to yt that produces yft is given by

yft =
s∑

j=−r
cjyt−j ≡ C(L)yt

i.e. the filter series yft is a linear combination of the original, unfiltered series
yt. This is the time domain approach. In the frequency domain, we replace Lj
in C(L) with with e−iωj and get the frequency response function C(e−iω).

Let us derive syft to see how we isolate cycles through filters. Assume {yt}
is a mean-zero process with autocovariance sequence {γ(τ)}∞t=−∞. Write the
autocovariance function between yft and yft−τ as

E(yft y
f
t−τ ) = E

 s∑
j=−r

cjyt−j

( s∑
k=−r

ckyt−k−τ

)

= E

s∑
j=−r

s∑
k=−r

cjckyt−jyt−k−τ

=
s∑

j=−r

s∑
k=−r

cjckγ(τ + k − j)

≡ γyf (τ)
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Now apply the Fourier transform of γyf (τ) to get the spectral density function
of yft :

syf (ω) = 1
2π

∞∑
τ=−∞

γyf (τ)e−iωτ

= 1
2π

∞∑
τ=−∞

s∑
j=−r

s∑
k=−r

cjckγ(τ + k − j)e−iωτ (7.30)

Let h = τ + k − j and rewrite e−iωτ in (7.30) as

e−iωτ = e−iω(h+j−k)

= e−iωhe−iωjeiωk (7.31)

Lastly, using (7.31), substitute into (7.30) for e−iωτ to get

syf (ω) = 1
2π

s∑
j=−r

cje
−iωj

s∑
k=−r

cke
iωk

∞∑
h=−∞

γ(h)e−iωh

=
s∑

j=−r
cje
−iωj

s∑
k=−r

cke
iωksy(ω)

= C(e−iω)C(eiω)sy(ω) (7.32)

Definition 7.51. The gain function is

G(ω) = |C(e−iω)|

where |C(e−iω)| is the modulus of C(e−iω), i.e.

|C(e−iω)| =
√
C(e−iω)C(eiω)

Example 7.52. For the first-difference filter, (1− L), the gain function is

G(ω) =
√

(1− e−iω)(1− eiω)

=
√

2
√

1− cos(ω) (7.33)

where the second equality follows from the fact that e−iω + eiω = 2 cos(ω).

Having defined the gain function, we are now in a better position to interpret
the relationship between syf (ω) and sy(ω) given by (7.32):

syf (ω) = |C(e−iω)|2sy(ω) ≡ G(ω)2sy(ω)

G(ω)2 is the squared gain of the filter and this relationship shows how filters
isolate cycles, viz. they strengthen or weaken the spectrum of the original series
on a frequency-by-frequency basis. For example, from (7.33) the first-difference
filter, (1− L), essentially shuts down zero frequency cycles.
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Having studied the first-difference detrending filter for isolating low fre-
quency cycles, let us look at another detrending frequency for isolating low
frequency cycles, viz. the HP filter. The HP filter is a special case of the third
type of detrending, i.e those that use filters that are designed to separate trend
from cycles given the possibility of a slowly evolving rather than a constant
trend; this third type of detrending contrasts from the assumption underlying
the first two types of trend removal, detrending and differencing, that the data
follow approximately constant growth rates. The HP filter is very popular in
business cycle applications; the band pass filter is a leading alternative to the
HP filter and will be discussed soon.

First decompose log yt as

log yt = gt + ct (7.34)

where gt is the growth component and ct is the cyclical component.

Definition 7.53. The HP filter estimates gt and ct, taking λ as given in the
minimisation:

T∑
t=1

c2t + λ

T∑
t=3

[(1− L)2gt]2 (7.35)

Trend removal is achieved by using the estimates from the HP filter, ĝt and
ĉt as follows:

ỹt = log yt − ĝt = ĉt

λ in (7.35) is the parameter that determines the degree of importance of
the smoothness of the evolving growth component: a smoother gt will have
a smaller second difference. When λ = 0, no weight is placed on smooth-
ness so all variation in log yt is due to the trend component, ct, whereas as
λ −→ ∞, the trend is as smooth as possible, i.e. linear. As a rule of thumb,
λ = 100 for annual data, λ = 1600 for quarterly data (business cycle data)
and λ = 14400 for monthly data. To explain these choices, we will explore
the frequency domain once more. But as an aside before doing this, we will
illustrate some of the trajectories of ĝt that result from this specification for
sample data, including hours. Typically in business cycle applications, all (or
most) series are subjected to the HP filter. See figure 6.3 of DeJong & Dave
(2011) [21]. Detrended output ỹt by the three different trend removal proce-
dures are presented in figure 6.4 of DeJong & Dave (2011) [21]. Of interest
is the difference in volatility across the three measures: the linearly detrended
series has the highest standard deviation, while the HP filtered series has the
smallest standard deviation; that linearly detrended series have higher volatil-
ity than differenced series should be obvious from the above discussion of the
HP filter. The behaviour in 6.4 provides additional support for the trend break
in the series.

Now moving into the frequency domain to further discuss the HP filter,
note that the specification of λ determines the influence of ω-specific yωt on yt
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between gt and ct in (7.34). The gain function of the HP filter is given by

G(ω) =
[

1 +
(

sin(ω/2)
sin(ω0/2)

)4
]−1

where
ω0 = 2arcsin

(
1

2λ 1
4

)
See Kaiser and Maravall (2001) [51] for more details on the derivation of this,
etc. The parameter ω0 is selected through the exact specification of λ and
determines the frequency at which 50% of the filter gain has been completed,
i.e. at which G(ω) = 0.5. You can play around with this in a computing
language such as MATLAB. The specification λ = 1600 for quarterly data
implies that 50% of the filter gain has been completed at a 40-quarter cycle
(ω = .157); similarly, λ = 400 implies that the 50% completion point is at 20
quarters and λ = 6, 400 implies that the point is at a 56-quarter cycle. How-
ever, while first-difference and HP filters can eliminate trends, they are not
designed to remove seasonals. With quarterly data, seasonal frequencies are
associated with 1

4 and 1
2 cycles per quarter and the squared gains associated

with each of these filters are positive at these values. Business cycle models
are usually not designed to explain seasonal variation, so we need to go further
than the HP filter or work with variables that have had seasonal variations
eliminated; aggregate variables are often reported in seasonally adjusted (SA)
form. One such seasonal adjustment filter is the US Census Bureau’s X-12
ARIMA found at http://www.census.gov/srd/www/x12a/; therefore, usually
seasonal adjustment is not a big issue in preparing data for empirical analysis,
but it is nonetheless instructive to understand the issue to appreciate the im-
portance of the seasonal adjustment step; in addition, the issue will motivate
the use of the band pass filter, which is the leading alternative to the HP filter.
See figures 6.8 and 6.9 in DeJong & Dave (2011) [21] for an illustration of the
importance of seasonal adjustment – non seasonally adjusted (NSA) versus SA
form, including HP trends (and HP filtered series in figure 6.9) for both; also
see figure 6.10 for spectra and remember that business cycle fluctuations lie
roughly between 1/40 and 1/6 cycles per quarter.

The band pass (BP) filter shuts down all fluctuations outside of a chosen
frequency band. Say we are interested in cycles with periods between pl and
pu, e.g. 6 and 40 quarters in business cycles applications. Then the ideal BP
filter has a squared gain such that

G(ω)2 =
{

1 ω ∈ [2π/pu, 2π/pl]
0 else

However, implementation of the ideal BP filter is infeasible since this re-
quires an infinite number of observations of unfiltered series as an input. This
is clear from (7.36) below. Yet again, we can approximate BP filters using
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different techniques proposed in the literature, for instance that by Baxter &
King (1999) [6], Woitek (1998) [83] and Christiano & Fitzgerald (2003) [14].
We will concentrate on the Baxter & King (1999) [6] version here.

Definition 7.54. The ideal symmetric BP filter for a chosen frequency range
is defined by

α(L) =
∞∑

j=−∞
αjL

j (7.36)

where α−j = αj ∀j by symmetry.

This symmetry property is an important one for filters since it allows us
to avoid the ‘phase effect’, which DeJong & Dave (2011) [21] characterise as
follows:

‘Under a phase effect, the timing of events between the unfiltered
and filtered series, such as the timing of business cycle turning
points, will be altered.’ (DeJong & Dave, 2011: 132) [21]

A symmetric filter has a very simple form of Fourier transform. Here, it is
given by

α(e−iω) ≡ α(ω) =
∞∑

j=−∞
αje
−iωj

= α0 +
∞∑
j=1

αj(e−iωj + eiωj) ∵ α−j = αj ∀j

= α0 + 2
∞∑
j=1

αj cos(ω) ∵ e−iω + eiω = 2 cosω

Baxter & King approximate α(ω) by the symmetric finite-ordered filter8

A(ω) = α0 + 2
K∑
j=1

aj cos(ω)

where at zero frequency

A(0) =
K∑

j=−K
aj = 0

which ensures that A(ω) can remove a trend from the unfiltered series. A(ω)
solves

min
aj

∫ π

−π
|α(ω)−A(ω)|2dω subject to A(0) = 0

8So, ∞ is replaced by K and α is replaced by a.
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i.e. A(ω) minimizes deviations from α(ω) (measured in terms of squared errors)
that are accumulated over different frequencies. The solution is given by

aj = αj + θ j = −K, . . . ,K

αj =
{
ωu−ωl
π j = 0

sin(ω2j)−sin(ω1j)
πj j = ±1, . . . ,K

θ =
−
∑K
j=−K αj

2K + 1

where ωl = 2π/pu and ωu = 2π/pl. Baxter & King suggest K = 12 for quar-
terly data, which results in the loss of 12 filtered observations at the beginning
and end of the sample period. See figure 6.11 in DeJong & Dave (2011) that
depicts squared gains associated with the ideal (optimal) filter and the Baxter-
King approximated BP filter constructed over the 1/40 and 1/6 cycles per
quarter (i.e. business cycle) range. See also figure 6.12 on BP filters using
K = 12 with SA and NSA consumption series; these are smooth series and
quite similar with no obvious trends or seasonal variations; spectra are shown
in 6.13 and confirm the absence of trend and seasonal variation on the varia-
tions in the series. When graphing to show trend removal, graph SA and NSA
versions and the estimated spectra.

7.3 Simulation Methods

The final lecture ‘simulation methods’ is based on chapters 17 and 18 in Greene
(2011) [42], which is required reading. Please refer to these chapters in addition
to any notes you may take during the lecture.
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