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1 Empirical Distributions

The empirical distribution

PN [(y, x) ∈ A] =
1

N

N∑
i=1

1[(yi, xi) ∈ A]
as−→ P [(y, x) ∈ A]

converges almost surely by the SSLN. Rather than in convergence in proba-
bility (weak LLNs), strong LLNs imply almost sure convergence. Recall that
convergence in probability relates to

lim
n−→∞

P (|Xn −X| > ε) = 0

while almost sure / almost everywhere convergence relates to

P ({ω : lim
n−→∞

Xn(ω) 6= X(ω)}) = 0

Note that limn−→∞Xn(ω) 6= X(ω) is related to ordinary convergence. Almost
sure convergence allows for sets not converging – e.g. sets of measure zero
(e.g. points). With convegence in probability, even as n gets larger, we can
still get outside the ε interval with positive probability. However, with almost
sure convergence, this cannot happen. So, almost sure convergence is stronger
than convergence is probability (hence ‘strong’ in LLNs). It is important to
go through this section on on empirical distributions as these kernel regressions
will be demonstrated in practice through MATLAB during laboratory sessions
in week 1.

2 Loss Functions

Our aim in conditional prediction is to predict P (y|x). Suppress the conditioning
on x and focus on P (y). Let p be a predictor of y. It would be ideal for p = y
but we suffer a loss when we fail to predict y with p. So, we can look for instance
at the distance y − p, how far our predictor is from y.

Sometimes, we are not too concerned with ‘small’ deviations, say when y−p
is less than one in absolute value, but we might be increasingly concerned with
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larger deviations, say when y−p is greater than one in absolute value. One such
‘loss function’ that captures this idea is the squared loss function, L(y − p) =
(y − p)2. Typically we let u denote y − p, i.e. u ≡ y − p and write L(u) = u2.

We may have different concerns however and feel that symmetric deviations
should be equally weighted. We can therefore use a symmetric absolute loss
function: L(u) = |u|.

To the extent that we must specify our predictor and loss function ex-ante,
we necessarily have to use the expected loss function, i.e. E(L(u)). The aim is
to minimise E(L(u)) by choosing a best predictor p.

One example of a loss function (in macro) is given by the inflation loss
function of a central banker. Take for instance chapter 10 of Romer’s Advanced
Macroeconomics. There equation (10.11) specifies that a policymaker minimises:

L =
1

2
(y − y∗)2 +

1

2
a(π − π∗)2 y∗ > ȳ a > 0

where y is log of output, ȳ is log of its flexible-price level, π is inflation and y∗
and π∗ denote the optimal log of output and optimal inflation rate, respectively;
a reflects the relative importanc of output and inflation in social welfare (L).
The further y deviates from y∗ – and likewise π from π∗ – the costlier it is in
terms of social welfare losses. So optimal choices of y∗ and π∗ minimise L.

Specification of such functions is rather a formal approach to most prob-
lems in economics and researchers often neglect to specify their loss functions.
Many papers do not make their assumptions clear, either. Authors typically
report point estimates, but as from our study of identification, it is generally
the case that to obtain such estimates, the researchers will have had to have
made assumptions along the way. Sometimes, the assumptions are credible, but
they should nonetheless be reported. Furthermore, there is no problem with
reporting intervals or ranges rather than single points. Scientific reporting is
certainly an area that can be much improved upon.
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