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Introduction
Overview of HT Modules

1. First Half – Michael Curran (Further Topics in Econometrics)

2. Second Half – Agust́ın Bénétrix (Time Series Econometrics)
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Topics to be Covered
Lecturer: Michael Curran

Lec 1: Identification (slides)

i) Incomplete Data
ii) Treatment Response

Lec 2–6: Limited Independent & Dependent Variables (Wooldridge, 7 & 17)

Lec 2: Binary (Dummy) Explanatory Variables
Lec 3: Binary Response I: Dummy Dependent Variables (LPM)
Lec 3: Application: Policy Analysis
Lec 4: Binary Response II: Logit & Probit Models
Lec 5: Corner Solutions / Threshold Models: Tobit Model
Lec 5: Count Models: Poisson Model
Lec 6: Censored & Truncated Models
Lec 6: Sample Selection Corrections

Lec 7–10: Endogeneity (Wooldridge, 15 & 16)

Lec 7–8: Instrumental Variable Estimation & Two Stage Least Squares
Lec 9–10: Simultaneous Equation Models – early studies on identification
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Identification

• Combining models and data, we draw conclusions.

• The credibility of our conclusions typically diminishes with the
strength of the assumptions of our models.

• Identification problems concern conclusions we could draw
from models where data is at the population level (N = ∞),
while inference problems concern conclusions we draw using
models with sample data.

• Examples of identification problems: reflection problem, death
penalty, missing data – not disappear by increasing the size of
the sample.

• Extrapolation, counterfactuals and external validity.
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Identification

y = x ′β + ε E (ε|x) = 0 (1)

Parameter b ∈ Rk is identified relative to β if

PX{x : x ′b 6= x ′β} > 0

In model (1), β is point identified if ∀b 6= β, b is identified
relative to β.
See example in class.
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Conditional Prediction

Goal: predict P(y |x).
Example: death penalty.
The best predictor p of the random variable Y given other
random variables X minimises a loss function L(·), say

min
p

E [L(y − p)|x ]

Let u = y − p. Then

p =

{
µ (mean) if L(u) = u2

m (median) if L(u) = |u|

m = min
θ

{
θ : P(y ≤ θ) ≥ 1

2

}
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Conditional Prediction

PN [(y , x) ∈ A] =
1

N

N

∑
i=1

1[(yi , xi ) ∈ A]
as−→ P [(y , x) ∈ A]

t is in the support of P if

P(t − δ ≤ y ≤ t + δ) > 0 ∀δ > 0

PN(y ∈ B |x = x0) =
1
N ∑N

i=1 1[yi ∈ B, xi = x0]
1
N ∑N

i=1 1[xi = x0]

as−→ P(y ∈ B |x = x0)

EN(y |x = x0) =
1
N ∑N

i=1 yi · 1[xi = x0]
1
N ∑N

i=1 1[xi = x0]

as−→ E (y |x = x0)
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Conditional Prediction

Bandwidth: dN .
Local average / uniform kernel estimate:

θN(x0, dN) = EN(y |x = x0) =
1
N ∑N

i=1 yi · 1[ρ(xi , x0) < dN ]
1
N ∑N

i=1 1[ρ(xi , x0) < dN ]

Local weighted average / kernel estimate:

EN(y |x = x0) =

1
N ∑N

i=1 yiK
[

ρ(xi ,x0)
dN

]
1
N ∑N

i=1 K
[

ρ(xi ,x0)
dN

]
Example: predicting high school graduation – see in class.
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Incomplete Data

For a sample space Ω (set of all outcomes of an experiment),
events B1, . . . ,BN where Bi ∈ Ω ∀i partition Ω if:

1. Bi ∩ Bj = ∅ ∀i 6= j (pairwise disjoint).

2. ∪iBi = Ω (cover).

Let P(Bi ) > 0 for all events in the partition. Then for any event
A, we have the law of total probability:

P(A) =
n

∑
i=1

P(A|Bi )P(Bi )

Let y be the outcome to be predicted, x be covariates and define
z = 1 if y is observed and z = 0 otherwise.
Express the missing data problem via law of total probability:
P(y |x) =
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Incomplete Data

P(y |x) =
Let P(y |x , z = 0) = γ ∈ ΓY

ΓY = set of all probability distributions on the set Y .
Identification region for P(y |x):

H [P(y |x)] = [P(y |x , z = 1)P(z = 1|x) + γP(z = 0|x); γ ∈ ΓY ]

P(z = 0|x) < 1 =⇒ H [·] ( ΓY

P(y |x) partially identified when 0 < P(z = 0|x) < 1 and point
identified when P(z = 0|x) = 0.
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Incomplete Data

Let θ(·) map probability distributions on Y into R and consider
parameter θ[P(y |x)].
Identification region: H{θ[P(y |x)]} = {θ(η), η ∈ H [P(y |x)]}.
Event probabilities:

P(y ∈ B |x) LTP
= P(y ∈ B |x , z = 1)P(z = 1|x) + P(y ∈ B |x , z = 0)︸ ︷︷ ︸

∈[0,1]

P(z = 0|x)

H [P(y ∈ B |x)] = [P(y ∈ B |x , z = 1)P(z = 1|x),P(y ∈ B |x , z = 1)P(z = 1|x)+P(z = 0|x)]

Interval width: P(z = 0|x); hence, data is informative unless y is
always missing.
See example in class.
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Incomplete Data

Given the existence of expectations, the law of iterated
expectations states EX (E (Y |X )) = E (Y ). Equivalently:

E (Y ) = EX (E (Y |X )) = ∑
x∈Supp(X )

E (Y |X = x)P(X = x)

Corollary of LIE: E (E (h(Y ,X )|X )) = E (h(Y ,X )), so

E [g(y)|x ] LIE
= E [g(y)|x , z = 1]P(z = 1|x)+E [g(y)|x , z = 0]P(z = 0|x)
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Incomplete Data

Data is assumed to be missing at random (MAR) or to be
conditionally statistically independent if:

P(y |x , z = 1) = P(y |x , z = 0) = P(y |x)

Note that MAR =⇒ E [y |x , z = 1] = E [y |x , z = 0] = E [y |x ].
MAR is a nonrefutable assumption – restricts the distribution
P(y |x , z = 0) of missing data.

H0[P(y |x)]
MAR≡ P(y |x , z = 1)

H0[E (y |x)]
MAR≡ E (y |x , z = 1)

Copyright c© 2013 Michael Curran 15/22



Introduction Identification Summary & References

Incomplete Data

Data alone imply that P(y |x) ⊂ H [P(y |x)]. Combining the data
with the assumption P(y |x) ⊂ Γ1Y :

H1[P(y |x)] ≡ H [P(y |x)] ∩ Γ1Y

H1 = 0 =⇒ assumption is refutable; H1 6= 0 =⇒ assumption is
nonrefutable, but we are not saying that the assumption is true!
H1[P(y |x)] ( H [P(y |x)] =⇒ assumption has identifying power.
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Treatment Response

• What would the outcomes be if we were to apply some
(possibly the same) treatment to a population?

• Examples: life-span if treatment is drugs or surgery, retraining
versus job assistance.
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Treatment Response
Notation:

• T : set of all feasible treatments t ∈ T mutually exclusive and
exhaustive.

• Each member j possesses covariates xj ∈ X .

• Outcomes yj (t) ∈ Y .

• Response function yj (·) : T −→ Y .

• zj ∈ T is j ’s received treatment so yj = yj (zj ) are realised
outcomes and [yj (t), t 6= zj ] are counterfactual outcomes.

Goal: infer P [y(t)|x ] given P(y , z |x) – selection problem –
problem of identification of P [y(t)|x ] given P(y , z |x).
P [y(t)|x ] LTP

=

H [P(y(t)|x)] = [P(y |x , z = t)P(z = t|x)+γP(z 6= t|x); γ ∈ ΓY ]

H{P [y(t)|x ], t ∈ T} = ×t∈TH{P [y(t)|x ]}
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Treatment Response

For two treatments t and t ′, the average treatment effect (ATE)
is:

E [y(t)|x ]− E [y(t ′)|x ]

Hypothesis: ATE = 0 is nonrefutable.
Randomisation of treatment:

P(y(t)|x) = P(y |x , z = t) = P(y(t)|x , z 6= t)

gives point identification and so hypothesis that ATE = 0 becomes
refutable.
Exercise: assuming y(t) ∈ [y0, y1] ∀t, bound ATE. Hint: use LIE
and observability of realised outcomes. What is the identification
region for ATE? Does it always contain zero and what is its width?
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Summary
• Problem of identification: population level.
• Conditional prediction:

• Mean (median) is best predictor for square (absolute) loss
function.

• Empirical nonparametric estimation uses analogy principle via
kernels and choice of bandwidth.

• Incomplete data:
• Use law of total probability and law of iterated expectations to

bound probability.
• Identification is not binary and data is informative unless

outcomes always missing.
• Missingness at random is a common nonrefutable assumption.
• Combining data and assumptions: strong assumptions tend to

have identifying power.
• Treatment response:

• ATE is a useful statistic for the selection problem where
randomisation of treatment is the analog to missing at
randomness.

Copyright c© 2013 Michael Curran 21/22



Introduction Identification Summary & References

References

• Identification: these slides and material from week 1
laboratory session.
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