Introduction Identification
[o]e] 000000000000 00

Lecture 1

Identification

Michael Curran

Trinity College Dublin

JS Econometrics

Copyright © 2013 Michael Curran

Summary & References

(e}

1/22



Introduction Identification
[o]e] 000000000000 00

Lecture 1 Outline

Introduction
Overview

Copyright © 2013 Michael Curran

Summary & References

(e}

2/22



Introduction Identification Summary & References
e0 000000000000 00 [e]e]

Introduction
Overview of HT Modules

1. First Half — Michael Curran (Further Topics in Econometrics)

2. Second Half — Agustin Bénétrix (Time Series Econometrics)
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Topics to be Covered

Lecturer: Michael Curran

Lec 1: Identification (slides)

i) Incomplete Data
ii) Treatment Response

Lec 2-6: Limited Independent & Dependent Variables (Wooldridge, 7 & 17)

Lec 2: Binary (Dummy) Explanatory Variables

Lec 3: Binary Response I: Dummy Dependent Variables (LPM)
Lec 3: Application: Policy Analysis

Lec 4: Binary Response II: Logit & Probit Models

Lec 5: Corner Solutions / Threshold Models: Tobit Model

Lec 5:  Count Models: Poisson Model

Lec 6: Censored & Truncated Models

Lec 6: Sample Selection Corrections

Lec 7-10: Endogeneity (Wooldridge, 15 & 16)

Lec 7-8: Instrumental Variable Estimation & Two Stage Least Squares
Lec 9-10: Simultaneous Equation Models — early studies on identification
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Identification

Combining models and data, we draw conclusions.
The credibility of our conclusions typically diminishes with the
strength of the assumptions of our models.

Identification problems concern conclusions we could draw
from models where data is at the population level (N = ),
while inference problems concern conclusions we draw using
models with sample data.

Examples of identification problems: reflection problem, death
penalty, missing data — not disappear by increasing the size of
the sample.

Extrapolation, counterfactuals and external validity.
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Identification

y=xB+e Elelx)=0 (1)
Parameter b € R¥ is identified relative to B if
Px{x:x'b# x'B} >0

In model (1), B is point identified if Vb # B, b is identified
relative to f.
See example in class.
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Conditional Prediction

Goal: predict P(y|x).

Example: death penalty.

The best predictor p of the random variable Y given other
random variables X minimises a loss function L£(-), say

min E[L(y — p)[x]
Let u =y — p. Then

b= {y (mean) if L(u) = u?
m (median) if L(u) = |u]
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Conditional Prediction

Pully.x) € Al = L1l ) € 4] 25 Plly. ) € 4

1

t is in the support of P if

Pt—6<y<t+4+d)>0V5>0

1 N

=Y 1lyi € B, xi = X

ah o) =, p(y € Blx= )
N Yiz1 1[Xi = XO]

PN(y S B‘X = Xo) =

1 N
N Li=1Yi - 1[Xi = Xxo
En(ylx = rg) = HEEV IR =0 o ), )

L 1x = xo]
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Conditional Prediction

Bandwidth: dy.
Local average / uniform kernel estimate:

S TN yi-1[o(xi x0) < dn]

9N<XO, dN) = EN(}/‘X = XO) —
8 XX 1o(xi, x0) < du]

Local weighted average / kernel estimate:

N E:: S yiK [44&5%5812}
NZ: . [ ZXO)}

Example: predicting high school graduation — see in class.

En(ylx =x0) =
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Incomplete Data

For a sample space Q) (set of all outcomes of an experiment),
events By, ..., By where B; € Q) Vi partition () if:

1. BiNB;j =@ Vi # j (pairwise disjoint).

2. U;iBj = Q) (cover).
Let P(B;) > O for all events in the partition. Then for any event
A, we have the law of total probability:

P(A) = 2 P(AIB;)P(B)

Let y be the outcome to be predicted, x be covariates and define
z=11if y is observed and z = 0 otherwise.
Express the missing data problem via law of total probability:

P(y|x) =
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Incomplete Data

P(ylx) =

Let P(y|x,z=0) =y €Ty

I'y = set of all probability distributions on the set Y.
Identification region for P(y|x):

HIP(y|x)] = [P(y|x,z = 1)P(z = 1]x) + 7P(z = 0[x); v € T'y]

P(z=0|x) <1= H[]CTy

P(y|x) partially identified when 0 < P(z = 0|x) < 1 and point
identified when P(z = 0|x) = 0.
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Incomplete Data

Let 6(-) map probability distributions on Y into R and consider
parameter 0[P (y|x)].

Identification region: H{O[P(y|x)]} = {08(n).n € H[P(y|x)]}.
Event probabilities:
P(y € Blx) T P(y € Blx,z=1)P(z = 1|x) + P(y € B|x,z = 0) P(z = 0|x)
€[0,1]
H[P(y € B|x)] = [P(y € B|lx,z=1)P(z = 1|x), P(y € B|x,z = 1)P(z = 1|x) + P(z = 0|x)]

Interval width: P(z = 0|x); hence, data is informative unless y is
always missing.
See example in class.
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Incomplete Data

Given the existence of expectations, the law of iterated
expectations states Ex(E(Y|X)) = E(Y). Equivalently:

E(Y)=Ex(E(YIX)) = Y E(Y|X =x)P(X = x)
x€Supp(X)

Corollary of LIE: E(E(h(Y,X)|X)) = E(h(Y, X)), so

Elg(y)|x] = Elg(y)|x.z = 1]P(z = 1|x) + E[g(y)|x, z = 0]P(z = O|x)
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Incomplete Data

Data is assumed to be missing at random (MAR) or to be
conditionally statistically independent if:

P(y|x,z=1) = P(y|x,z=0) = P(y|x)
Note that MAR = E[y|x,z = 1] = E[y|x,z = 0] = E[y|x].

MAR is a nonrefutable assumption — restricts the distribution
P(y|x,z = 0) of missing data.
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Incomplete Data

Data alone imply that P(y|x) C H[P(y|x)]. Combining the data
with the assumption P(y|x) C I'1y:

Hi[P(y|x)] = HIP(y|[x)] NT1y

H; = 0 = assumption is refutable; H; # 0 = assumption is
nonrefutable, but we are not saying that the assumption is true!

Hi[P(y|x)] € H[P(y|x)] = assumption has identifying power.
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Treatment Response

e What would the outcomes be if we were to apply some
(possibly the same) treatment to a population?

e Examples: life-span if treatment is drugs or surgery, retraining
versus job assistance.
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Treatment Response
Notation:

e T: set of all feasible treatments t € T mutually exclusive and
exhaustive.

Each member j possesses covariates x; € X.

Outcomes y;(t) € Y.

Response function y;(-) : T — Y.

zj € T is j's received treatment so y; = y;(z;) are realised
outcomes and [y;j(t), t # z| are counterfactual outcomes.

Goal: infer Ply(t)|x] given P(y, z|x) — selection problem —
problem of identification of P[y(t)|x] given P(y, z|x).

Ply(t)|x] &
HIP(y(2)[x)] = [P(ylx.z = t)P(z = t|x) + P (z # t|x); ¥ € Ty]

H{Ply(t)Ix],t € T} = xeeTH{P[y(t)|x]}
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Treatment Response

For two treatments t and t/, the average treatment effect (ATE)
is:

Ely(t)|x] — E[y(t')|x]

Hypothesis: ATE = 0 is nonrefutable.
Randomisation of treatment:

Ply(t)lx) = Plylx.z=1t) = P(y(t)|x,z # t)

gives point identification and so hypothesis that ATE = 0 becomes
refutable.

Exercise: assuming y(t) € [yo,)1] Vt, bound ATE. Hint: use LIE
and observability of realised outcomes. What is the identification
region for ATE? Does it always contain zero and what is its width?
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Summary

e Problem of identification: population level.
e Conditional prediction:

e Mean (median) is best predictor for square (absolute) loss
function.

e Empirical nonparametric estimation uses analogy principle via
kernels and choice of bandwidth.

e Incomplete data:

e Use law of total probability and law of iterated expectations to
bound probability.

o |dentification is not binary and data is informative unless
outcomes always missing.

e Missingness at random is a common nonrefutable assumption.

e Combining data and assumptions: strong assumptions tend to
have identifying power.

e Treatment response:

e ATE is a useful statistic for the selection problem where
randomisation of treatment is the analog to missing at
randomness.
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References

e |dentification: these slides and material from week 1
laboratory session.
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