Lecture 1 Identification

Michael Curran
Trinity College Dublin
JS Econometrics

Lecture 1 Outline

Introduction
Overview

Identification Identification

Summary \& References Summary \& References

Introduction

Overview of HT Modules

1. First Half - Michael Curran (Further Topics in Econometrics)
2. Second Half - Agustín Bénétrix (Time Series Econometrics)

Topics to be Covered

Lecturer: Michael Curran

Lec 1: Identification (slides)
i) Incomplete Data
ii) Treatment Response

Lec 2-6: Limited Independent \& Dependent Variables (Wooldridge, 7 \& 17)
Lec 2: Binary (Dummy) Explanatory Variables
Lec 3: Binary Response I: Dummy Dependent Variables (LPM)
Lec 3: Application: Policy Analysis
Lec 4: Binary Response II: Logit \& Probit Models
Lec 5: Corner Solutions / Threshold Models: Tobit Model
Lec 5: Count Models: Poisson Model
Lec 6: Censored \& Truncated Models
Lec 6: Sample Selection Corrections
Lec 7-10: Endogeneity (Wooldridge, 15 \& 16)
Lec 7-8: Instrumental Variable Estimation \& Two Stage Least Squares
Lec 9-10: Simultaneous Equation Models - early studies on identification

Lecture 1 Outline

Introduction

Overview

Identification
Identification

Summary \& References
Summary \& References

Identification

- Combining models and data, we draw conclusions.
- The credibility of our conclusions typically diminishes with the strength of the assumptions of our models.
- Identification problems concern conclusions we could draw from models where data is at the population level $(N=\infty)$, while inference problems concern conclusions we draw using models with sample data.
- Examples of identification problems: reflection problem, death penalty, missing data - not disappear by increasing the size of the sample.
- Extrapolation, counterfactuals and external validity.

Identification

$$
\begin{equation*}
y=x^{\prime} \beta+\epsilon \quad E(\epsilon \mid x)=0 \tag{1}
\end{equation*}
$$

Parameter $b \in \mathbb{R}^{k}$ is identified relative to β if

$$
P_{X}\left\{x: x^{\prime} b \neq x^{\prime} \beta\right\}>0
$$

In model (1), β is point identified if $\forall b \neq \beta, b$ is identified relative to β.
See example in class.

Conditional Prediction

Goal: predict $P(y \mid x)$.
Example: death penalty.
The best predictor p of the random variable Y given other random variables X minimises a loss function $\mathcal{L}(\cdot)$, say

$$
\min _{p} E[\mathcal{L}(y-p) \mid x]
$$

Let $u=y-p$. Then

$$
\begin{gathered}
p= \begin{cases}\mu(\text { mean }) & \text { if } \mathcal{L}(u)=u^{2} \\
m(\text { median }) & \text { if } \mathcal{L}(u)=|u|\end{cases} \\
m=\min _{\theta}\left\{\theta: P(y \leq \theta) \geq \frac{1}{2}\right\}
\end{gathered}
$$

Conditional Prediction

$$
P_{N}[(y, x) \in A]=\frac{1}{N} \sum_{i=1}^{N} 1\left[\left(y_{i}, x_{i}\right) \in A\right] \xrightarrow{\text { as }} P[(y, x) \in A]
$$

t is in the support of P if

$$
\begin{gathered}
P(t-\delta \leq y \leq t+\delta)>0 \forall \delta>0 \\
P_{N}\left(y \in B \mid x=x_{0}\right)=\frac{\frac{1}{N} \sum_{i=1}^{N} 1\left[y_{i} \in B, x_{i}=x_{0}\right]}{\frac{1}{N} \sum_{i=1}^{N} 1\left[x_{i}=x_{0}\right]} \xrightarrow{\text { as }} P\left(y \in B \mid x=x_{0}\right) \\
E_{N}\left(y \mid x=x_{0}\right)=\frac{\frac{1}{N} \sum_{i=1}^{N} y_{i} \cdot 1\left[x_{i}=x_{0}\right]}{\frac{1}{N} \sum_{i=1}^{N} 1\left[x_{i}=x_{0}\right]} \xrightarrow{\text { as }} E\left(y \mid x=x_{0}\right)
\end{gathered}
$$

Conditional Prediction

Bandwidth: d_{N}.
Local average / uniform kernel estimate:

$$
\theta_{N}\left(x_{0}, d_{N}\right)=E_{N}\left(y \mid x=x_{0}\right)=\frac{\frac{1}{N} \sum_{i=1}^{N} y_{i} \cdot 1\left[\rho\left(x_{i}, x_{0}\right)<d_{N}\right]}{\frac{1}{N} \sum_{i=1}^{N} 1\left[\rho\left(x_{i}, x_{0}\right)<d_{N}\right]}
$$

Local weighted average / kernel estimate:

$$
E_{N}\left(y \mid x=x_{0}\right)=\frac{\frac{1}{N} \sum_{i=1}^{N} y_{i} K\left[\frac{\rho\left(x_{i}, x_{0}\right)}{d_{N}}\right]}{\frac{1}{N} \sum_{i=1}^{N} K\left[\frac{\rho\left(x_{i}, x_{0}\right)}{d_{N}}\right]}
$$

Example: predicting high school graduation - see in class.

Incomplete Data

For a sample space Ω (set of all outcomes of an experiment), events B_{1}, \ldots, B_{N} where $B_{i} \in \Omega \forall i$ partition Ω if:

1. $B_{i} \cap B_{j}=\varnothing \forall i \neq j$ (pairwise disjoint).
2. $\cup_{i} B_{i}=\Omega$ (cover).

Let $P\left(B_{i}\right)>0$ for all events in the partition. Then for any event A, we have the law of total probability:

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right)
$$

Let y be the outcome to be predicted, x be covariates and define $z=1$ if y is observed and $z=0$ otherwise.
Express the missing data problem via law of total probability:
$P(y \mid x)=$

Incomplete Data

$P(y \mid x)=$
Let $P(y \mid x, z=0)=\gamma \in \Gamma_{Y}$
$\Gamma_{Y}=$ set of all probability distributions on the set Y. Identification region for $P(y \mid x)$:

$$
\begin{gathered}
H[P(y \mid x)]=\left[P(y \mid x, z=1) P(z=1 \mid x)+\gamma P(z=0 \mid x) ; \gamma \in \Gamma_{Y}\right] \\
P(z=0 \mid x)<1 \Longrightarrow H[\cdot] \subsetneq \Gamma_{Y}
\end{gathered}
$$

$P(y \mid x)$ partially identified when $0<P(z=0 \mid x)<1$ and point identified when $P(z=0 \mid x)=0$.

Incomplete Data

Let $\theta(\cdot)$ map probability distributions on Y into \mathbb{R} and consider parameter $\theta[P(y \mid x)]$. Identification region: $H\{\theta[P(y \mid x)]\}=\{\theta(\eta), \eta \in H[P(y \mid x)]\}$. Event probabilities:

$$
P(y \in B \mid x) \stackrel{\operatorname{LTP}}{=} P(y \in B \mid x, z=1) P(z=1 \mid x)+\underbrace{P(y \in B \mid x, z=0)}_{\in[0,1]} P(z=0 \mid x)
$$

$H[P(y \in B \mid x)]=[P(y \in B \mid x, z=1) P(z=1 \mid x), P(y \in B \mid x, z=1) P(z=1 \mid x)+P(z=0 \mid x)]$ Interval width: $P(z=0 \mid x)$; hence, data is informative unless y is always missing.
See example in class.

Incomplete Data

Given the existence of expectations, the law of iterated expectations states $E_{X}(E(Y \mid X))=E(Y)$. Equivalently:

$$
E(Y)=E_{X}(E(Y \mid X))=\sum_{x \in \operatorname{Supp}(X)} E(Y \mid X=x) P(X=x)
$$

Corollary of LIE: $E(E(h(Y, X) \mid X))=E(h(Y, X))$, so
$E[g(y) \mid x] \stackrel{\text { LIE }}{=} E[g(y) \mid x, z=1] P(z=1 \mid x)+E[g(y) \mid x, z=0] P(z=0 \mid x)$

Incomplete Data

Data is assumed to be missing at random (MAR) or to be conditionally statistically independent if:

$$
P(y \mid x, z=1)=P(y \mid x, z=0)=P(y \mid x)
$$

Note that MAR $\Longrightarrow E[y \mid x, z=1]=E[y \mid x, z=0]=E[y \mid x]$. MAR is a nonrefutable assumption - restricts the distribution $P(y \mid x, z=0)$ of missing data.

$$
\begin{aligned}
& H_{0}[P(y \mid x)] \stackrel{\text { MAR }}{\equiv} P(y \mid x, z=1) \\
& H_{0}[E(y \mid x)] \stackrel{\text { MAR }}{\equiv} E(y \mid x, z=1)
\end{aligned}
$$

Incomplete Data

Data alone imply that $P(y \mid x) \subset H[P(y \mid x)]$. Combining the data with the assumption $P(y \mid x) \subset \Gamma_{1 Y}$:

$$
H_{1}[P(y \mid x)] \equiv H[P(y \mid x)] \cap \Gamma_{1 Y}
$$

$H_{1}=0 \Longrightarrow$ assumption is refutable; $H_{1} \neq 0 \Longrightarrow$ assumption is nonrefutable, but we are not saying that the assumption is true! $H_{1}[P(y \mid x)] \subsetneq H[P(y \mid x)] \Longrightarrow$ assumption has identifying power.

Treatment Response

- What would the outcomes be if we were to apply some (possibly the same) treatment to a population?
- Examples: life-span if treatment is drugs or surgery, retraining versus job assistance.

Treatment Response

Notation:

- T : set of all feasible treatments $t \in T$ mutually exclusive and exhaustive.
- Each member j possesses covariates $x_{j} \in X$.
- Outcomes $y_{j}(t) \in Y$.
- Response function $y_{j}(\cdot): T \longrightarrow Y$.
- $z_{j} \in T$ is j 's received treatment so $y_{j}=y_{j}\left(z_{j}\right)$ are realised outcomes and $\left[y_{j}(t), t \neq z_{j}\right]$ are counterfactual outcomes.
Goal: infer $P[y(t) \mid x]$ given $P(y, z \mid x)$ - selection problem problem of identification of $P[y(t) \mid x]$ given $P(y, z \mid x)$.
$P[y(t) \mid x] \stackrel{\text { LTP }}{=}$
$H[P(y(t) \mid x)]=\left[P(y \mid x, z=t) P(z=t \mid x)+\gamma P(z \neq t \mid x) ; \gamma \in \Gamma_{Y}\right]$

$$
H\{P[y(t) \mid x], t \in T\}=x_{t \in T} H\{P[y(t) \mid x]\}
$$

Treatment Response

For two treatments t and t^{\prime}, the average treatment effect (ATE) is:

$$
E[y(t) \mid x]-E\left[y\left(t^{\prime}\right) \mid x\right]
$$

Hypothesis: $A T E=0$ is nonrefutable.
Randomisation of treatment:

$$
P(y(t) \mid x)=P(y \mid x, z=t)=P(y(t) \mid x, z \neq t)
$$

gives point identification and so hypothesis that $A T E=0$ becomes refutable.
Exercise: assuming $y(t) \in\left[y_{0}, y_{1}\right] \forall t$, bound ATE. Hint: use LIE and observability of realised outcomes. What is the identification region for ATE? Does it always contain zero and what is its width?

Lecture 1 Outline

Introduction
 Overview
 Identification
 Identification

Summary \& References
Summary \& References

Summary

- Problem of identification: population level.
- Conditional prediction:
- Mean (median) is best predictor for square (absolute) loss function.
- Empirical nonparametric estimation uses analogy principle via kernels and choice of bandwidth.
- Incomplete data:
- Use law of total probability and law of iterated expectations to bound probability.
- Identification is not binary and data is informative unless outcomes always missing.
- Missingness at random is a common nonrefutable assumption.
- Combining data and assumptions: strong assumptions tend to have identifying power.
- Treatment response:
- ATE is a useful statistic for the selection problem where randomisation of treatment is the analog to missing at randomness.

References

- Identification: these slides and material from week 1 laboratory session.

