
Tobit Model Count Models Summary & References

Lecture 5
Limited Variables 4 of 5:
Tobit & Poisson Models

Michael Curran

Trinity College Dublin

JS Econometrics

Copyright c© 2013 Michael Curran 1/24



Tobit Model Count Models Summary & References

Lecture 5 Outline

Tobit Model
Tobit Model for Corner Solution Responses

Count Models
Poisson Regression Model

Summary & References
Summary & References

Copyright c© 2013 Michael Curran 2/24



Tobit Model Count Models Summary & References

Tobit Model
Corner Solutions

Zero for nontrivial fraction of population but roughly continuously
distributed over positive values. Example? Let y be continuous
over strictly positive values but take on zero with positive
probability. Because distribution of y piles up at zero, y can’t be a
conditionally Normal distribution. So all inference would only have
asymptotic justification like LPM. Overcomes limitations of LPM.
Tobit model is convenient and typically expresses the observable
response y in terms of an underlying latent variable:

y ∗ = β0 + xβ + u, u|x ∼ N(0, σ2) (1)

y = max(0, y ∗) (2)

Latent variable y ∗ satisfies CLRM assumptions: Normal,
homoscedastic distribution with a linear conditional mean. (2)
implies observable variable y is y ∗ when y ∗ ≥ 0 but y = 0 when
y ∗ < 0.
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Tobit Model
Corner Solutions

Since y ∗ is Normal, y has continuous distribution over strictly
positive values. In particular, density of y given x is same as
density of y ∗ given x for positive values. Further:

P(y = 0|x) = P(y ∗ < 0|x) = P(u < −xβ|x)

= P(
u

σ
< −xβ

σ
|x) = Φ(−xβ

σ
) = 1−Φ(

xβ

σ
)

since u
σ is N(0,1) and is independent of x; intercept is in x. If

(xi, yi ) is random draw from population, density of yi given xi is
given by:

(2πσ2)
−1
2 exp

[
−(y − xi β)2

(2σ)2

]
=

1

σ
φ

[
(y − xi β)

σ

]
y > 0 (3)

P(yi = 0|xi ) = 1−Φ
(

xi β

σ

)
(4)
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Tobit Model
Corner Solutions

From (3) & (4) we can obtain the log-likelihood function for each
observation i :

`i (β, σ) = 1(yi = 0) log

[
1−Φ

(
xi β

σ

)]
+ 1(yi > 0) log

{
1

σ
φ

[
(yi − xi β)

σ

]}
(5)

The log-likelihood for a random sample of size n is obtained by
summing (5) across all i .
MLE of β and σ require numerical methods (mostly done easily on
packaged routine). The matrix formula for SE is complicated.
Testing multiple exclusion restrictions: Wald test (similar form to
logit/probit case) / LR test (as in logit/probit but with Tobit
log-likelihood for restricted and unrestricted models).
Question 17.3.

Copyright c© 2013 Michael Curran 5/24



Tobit Model Count Models Summary & References

Tobit Model
Interpreting Estimates

Cannot interpret β̂j from Tobit MLE the same as from linear
model OLS.
From (1), βj measure partial effects of xj on E (y ∗|x). Want to
explain y (observed outcome, e.g. hours worked). Can estimate
P(y = 0|x) from (4) and this allows us est P(y > 0|x) but what if
want to estimate expected value of y as function of x?
With Tobit, 2 expectations are interesting: (i) E (y |y > 0, x)
‘conditional expectation’ and (ii) E (y |x) unfortunately called
‘unconditional expectation’. Given E (y |y > 0, x), can easily find
E (y |x):

E (y |x) = P(y > 0|x) · E (y |y > 0, x) = Φ(
xβ

σ
) · E (y |y > 0, x)

(6)
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Tobit Model
Interpreting Estimates

To get E (y |y > 0, x) use result:

z ∼ N(0, 1) =⇒ E (z |z > c) = φ(c)
[1−Φ(c)]

for any constant c But:

E (y |y > 0, x) = xβ + E (u|u > −xβ)

= xβ + σE [
u

σ
|u
σ
> −xβ

σ
]

= xβ +
σφ( xβ

σ )

Φ( xβ
σ )

since φ(−c) = φ(c), 1−Φ(−c) = Φ(c) and u
σ has standard

Normal distribution independent of x. So

E (y |y > 0, x) = xβ + σλ

(
xβ

σ

)
(7)

where λ(c) = φ(c)
Φ(c)

is called the inverse Mills ratio.
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Tobit Model
Interpreting Estimates

Since Φ
(

xβ
σ

)
λ
(

xβ
σ

)
= φ

(
xβ
σ

)
, combining (6) & (7) gives:

E (y |x) = Φ
(

xβ

σ

) [
xβ + σλ

(
xβ

σ

)]
= Φ

(
xβ

σ

)
xβ+σφ

(
xβ

σ

)
(8)

With β estimates we can be sure that predicted values for y
(estimates of E (y |x)) are positive, but this comes at a cost:
equation (8) is more complicated than a linear model. Partial
effects of xj on E (y |y > 0, x) and E (y |x) have same sign as
coefficient βj but magnitude of effects depend on values of all
explanatory variables and parameters. Since σ appears in (8), the
partial effects depend on σ also.
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Tobit Model
Interpreting Estimates

Partial effects: let xj be continuous and assume xj is not related to
other regressors. Then:

∂E (y |y > 0, x)

∂xj
= βj + βj · dλ

(
xβ

σ

)
Differentiate λ(c) = φ(c)

Φ(c)
and use dΦ

dc = φ(c) and
dφ
dc = −cφ(c).

ICBST: dλ
dc = −λ(c)[c + λ(c)] So we get:

∂E (y |y > 0, x)

∂xj
= βj

{
1− λ

(
xβ

σ

) [
xβ

σ
+ λ

(
xβ

σ

)]}
(9)

Estimate (9) by plugging in MLEs of βj and σ. Like logit/probit,
plug in values for xj like mean values or other interesting values.
Subtlety: σ appears in partial effects directly so crucial to estimate
this for estimating partial effects; σ called ‘ancillary’ parameter
(i.e. auxiliary or important – misleading terminology).
Usual economic quantities can be computed, e.g. elasticities.
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Tobit Model
Interpreting Estimates

∂E (y |x)
∂xj

=
∂P(y > 0|x)

∂xj
·E (y |y > 0, x)+P(y > 0|x) · ∂E (y |y > 0, x)

∂xj
(10)

∂P(y > 0|x)
∂xj

=
βj

σ
φ

(
xβ

σ

)
(11)

Thus can estimate each term in (10) once we plug in MLEs of βj

and σ and particular values of the xj .

∂E (y |x)
∂xj

= βjΦ
(

xβ

σ

)
(12)

(12) allows us to roughly compare OLS and Tobit estimates. OLS
slope coefficients (e.g. γ̂j from regression of yi on xi1, xi2, . . . , xik
where i = 1, . . . , n i.e. using all of data) are direct estimates of
∂E (y |x)/∂xj . To make Tobit coefficients β̂j comparable to γ̂j , we
multiply β̂j by an adjustment factor.
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Tobit Model
Interpreting Estimates

2 approaches for computing an adjustment factor:

1. Evaluate Φ
(

xβ̂
σ̂

)
at sample averages to obtain Φ

(
x̄β̂
σ̂

)
2. Average the individual adjustment factors n−1 ∑n

i=1 Φ
(

x̄i β̂
σ̂

)
For comparing scaled Tobit coefficients to OLS coefficients, second
scale factor generally is more appropriate. Both scale factors will
tend to be closer to one when there are relatively few observations
with yi = 0. In extreme case that all yi > 0, Tobit and OLS
estimates are identical. With discrete explanatory variables,
comparing OLS and Tobit est is not so easy; however, scale factor
for continuous explanatory variables is often a useful
approximation.
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Tobit Model
Specification Issues

• Tobit (especially (7) and (8)) crucially relies on Normality and
homogeneity in underlying latent variable model, unlike linear
model where Normality of y does not affect unbiasedness /
consistency / large sample inference and heterogeneity does
not affect unbiasedness / consistency of OLS and we can use
robust SE for inference.

• Tobit: if any assumptions in (1) fail, it’s hard to know what
we’re estimating but for moderate departures, Tobit model is
likely to provide good estimates for partial effects on
conditional means.

• Can allow more general assumptions in (1) but hard to
estimate and interpret.

• Limitation: expected value conditional on y > 0 linked with
probability y > 0.
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Tobit Model
Specification Issues

How can we informally evaluate whether Tobit is appropriate?
Estimate probit where binary outcome w = 1 if y > 0 and w = 0
if y = 0. Then from (4), w follows probit model where coefficient

on xj is γj =
βj

σ so we can estimate ratio of βj to σ by probit for
each j . If Tobit model holds, probit estimate γ̂j should be ‘close’
to β̂j/σ̂ where these are Tobit estimates. Never identical (due to
sampling error) but warning signs include different signs or same
signs and much different magnitudes; sign changes or magnitude
differences on explanatory variables that are insignificant in both
models should not be a cause for concern. If Tobit is inappropriate,
hurdle or two-part models can be used and have the property that
P(y > 0|x) and E (y |y > 0, x) depend on different parameters so
xj can have dissimilar effects on these two functions (done in
‘Advanced’ Wooldridge).
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Poisson Regression Model

• A count variable is a dependent variable, which takes on
nonnegative integer values {0, 1, 2, . . .}.

• Focus: when y takes on relatively few values including zero.
Examples?

• Like Tobit outcome, can’t take logarithm of a count variable
because it takes on the value zero, so model expected value as
an exponential function:

E (y |x1, x2, . . . , xk) = exp (β0 + β1x1 + . . . + βkxk) (13)
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Poisson Regression Model

%∆E (y |x) ≈ (100βj )∆xj

So 100βj is the approximate percentage change in E (y |x) given a
one-unit increase in xj . When a more accurate estimate is needed,
we can look at discrete changes in the expected value.
Keep all explanatory variables except xk fixed and let x0k be initial
value and x1k be subsequent value. Proportionate change in
expected value is:[

exp (β0 + xk−1βk−1 + βkx
1
k )

exp (β0 + xk−1βk−1 + βkx
0
k )

]
− 1 = exp (βk∆xk)− 1

We can interpret coefficients in model (13) as if we have a linear
model with log (y) as the dependent variable.
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Poisson Regression Model

• Since (13) is nonlinear in parameters (exp ()), we cannot use
linear regression methods.

• We could use nonlinear least squares (NLLS) just like OLS
minimizes SSR.

• However, all standard count data distributions are
heteroscedastic and NLLS doesn’t exploit this so we rely on
ML and an important related method of quasi-maximum
likelihood estimation.

• A count variable can’t have a Normal distribution because the
Normal distribution is for continuous variables that can take
on all (or a large range [approx]) values and if it takes on very
few values, the distribution is very different from a Normal, so
instead the nominal distribution for count data is the Poisson
distribution.
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Poisson Regression Model
Since we’re interested in effect of explanatory variables on y , look
at Poisson distribution conditional on x. Poisson distribution is
determined solely by its mean so only need to specify E (y |x).
Assume this has same form as (13); write in shorthand as
exp (xβ). Probability that y equals value h conditional on x:

P(y = h|x) = 1

h!
e−e

xβ
(
exβ

)h
h = 0, 1, . . .

The distribution forms basis for the Poisson regression model:
can find conditional probability for any values of explanatory
variables; e.g. P(y = 0|x) = e−e

xβ
. After estimating βj , we can

plug them into the probability for various values of x. Given a
random sample {(xi , yi ) : i = 1, . . . , n}, log-likelihood is:

L(β) =
n

∑
i=1

`i (β) =
n

∑
i=1

{yixi β− exp (xi β)} (14)

Poisson MLEs are not obtained in closed form.
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Poisson Regression Model
Can’t directly compare magnitude of Poisson estimates of exp ()
function with OLS estimates of linear function; rough comparison
possible (at least for continuous explanatory variables).
While Poisson MLE is a natural first step for count data, it’s often
too restrictive. All probabilities and higher moments of Poisson
distribution are determined entirely by mean. E.g:

Var(y |x) = E (y |x) (15)

This has been shown to be violated in many applications.
Fortunately, the Poisson distribution has nice robustness property:
whether or not Poisson distribution holds, we still get consistent,
asymptotically Normal estimates of βj like the Normality
assumption for OLS (consistent and asymptotically Normal
irrespective of the Normality assumption). Note: when we use
Poisson MLE but not assume Poisson distribution is entirely
correct, we call the analysis quasi-maximum likelihood
estimation (QMLE).
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Poisson Regression Model
However, unless Poisson variance assumption (15) holds, SE need
to be adjusted. Simple adjustment to SE is available when we
assume variance is proportional to mean:

Var(y |x) = σ2E (y |x) (16)

σ2 = 1 =⇒ Poisson variance assumption. σ2 > 1 =⇒ variance is
greater than the mean for all x – called overdispersion since
variance is larger than in the Poisson case and it is observed in
many applications of count regressions. σ2 < 1 =⇒ called
underdispersion and is less common but is allowed in (16).
Under (16), it’s easy to adjust the usual Poisson MLE SE. Let β̂j

be Poisson QMLE and define residuals as ûi = yi − ŷi where
ŷi = exp (β̂0 + β̂1xi1 + . . . + β̂kxik) is the fitted value. Residual
for observation i is difference between yi and fitted value. A

consistent estimate of σ2 is 1
n−k−1 ∑n

i=1
û2i
ŷi
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Poisson Regression Model

• Other count data models generalise Poisson.

• If we are only interested in effects of xj on mean response,
then there is little reason to go beyond Poisson: it’s simple,
often gives good results and has robustness property. We can
actually apply Poisson to y that is a Tobit-like outcome,
provided (13) holds, which might give good estimates of mean
effects.

• Extensions of Poisson regression are more useful when
interested in estimating probabilities, e.g. P(y > 1|x) (see
Cameron and Trivedi, 1998).
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Summary

• Corner solution models: Tobit.
• Estimation by MLE through numerical methods.
• Testing multiple hypotheses: Wald / LR.
• Interpret estimates as partial effects and note inverse Mills

ratio.

• Count models: Poisson.
• Estimation by quasi-MLE.
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References

• Tobit Model: Wooldridge 17.2.

• Poisson Regression Model: Wooldridge 17.3.
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