
EC3090 Mock Exam Solutions

Michael Curran

Attempt ONE question from the two questions in this section.

Question 1 (50 Marks) – Identification & Simultaneous Equations Mod-
els.

Part (a): (25 Marks)

Given that we are taking marks in ‘fives’, let us write the revised distribution
in table 1. There are N = 120 students in the class, of whom we have no

Score Frequency

5 3
15 17
25 2
35 10
45 18
55 10
65 15
75 21
85 15
95 3

Table 1: Revised distribution of marks.

data on six, so P (z = 0) = 6
120

= 0.05 is the fraction of missing data;
remember PN(z = 1) = 1

N

∑N
i=1 1[zi = 1].
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1. To pass, students must get at least 40. Letting B denote the set of
all such marks from the revised distribution that corresponding to the
students passing, to pass y must be in B:

y ∈ {45, 55, 65, 75, 85, 95} ≡ B

(1 Mark)
We want P (y ∈ B) and can express this using the law of total proba-
bility (LTP) as

P (y ∈ B)
LTP
= P (y ∈ B|z = 1)P (z = 1) +P (y ∈ B|z = 0)P (z = 0) (1)

(2 Marks)
We know

P (z = 0) = 0.05 =⇒ P (z = 1) = 1− P (z = 0) = 1− 0.05 = 0.95

(0.25 Marks for each P (z = 0) = 0.05 and P (z = 1) = 0.95)
and while P (y ∈ B|z = 0) is the only unknown quantity in (1), be-
cause it is a probability, P (y ∈ B|z = 0) ∈ [0, 1]. (0.5 Marks) We
need to calculate P (y ∈ B|z = 1).

PN(y ∈ B|z = 1) =

∑N
i=1 1[yi ∈ B, zi = 1]∑N

i=1 1[zi = 1]

=
18 + 10 + 15 + 21 + 15 + 3

120− 6

=
82

114

∴ P (y ∈ B) =
82

114
× 0.95 + [0, 1]× 0.05

∈
[

41

60
,
11

15

]
≡ H[P (y ∈ B)]
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which is our identification region for the probability that a student
passes. (1 Mark for P (y ∈ B|z = 1) = 82

114
, 1 Mark for H[P (y ∈ B)] =[

41
60
, 11

15

]
)

2. The assumption of missingness at random (MAR) is

P (y|z = 1) = P (y|z = 0)

Observation: Observe that under MAR

P (y|z = 1) = P (y|z = 0) = P (y)

To see this, use the law of total probability to expand P (y):

P (y)
LTP
= P (y|z = 1)P (z = 1) + P (y|z = 0)P (z = 0)

MAR
= P (y|z = 1)[P (z = 1) + P (z = 0)︸ ︷︷ ︸

1

]

= P (y|z = 1)

MAR
= P (y|z = 0)

Note that here MAR implies that

P (y ∈ B|z = 1) = P (y ∈ B|z = 0)

(0.5 Marks)

∴ P (y ∈ B)
LTP
= P (y ∈ B|z = 1)P (z = 1) + P (y ∈ B|z = 0)P (z = 0)

MAR
= P (y ∈ B|z = 1)

1
=

82

114

(0.5 Marks for first line, 0.5 marks for second line, 0.5 marks for third
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line). Therefore, MAR point identifies P (y ∈ B). (0.5 Marks)
Certainly, the bound is tighter:(0.25 Marks)

H1[P (y ∈ B)] =

[
41

60
,
11

15

]
3 82

114
= H1[P (y ∈ b)]

(0.25 Marks)
It is tighter because we impose a strong, nonrefutable assumption
on the distribution of unknown, missing data (0.25 Marks); and it is
nonrefutable (0.25 Marks) because the assumption directly restricts
the distribution P (y ∈ B|z = 0) of missing data (0.5 Marks).

3. We want E(y), so using the law of iterated expectations to expand
E(y), we get that

E(y)
LIE
= E(y|z = 1)P (z = 1) + E(y|z = 0)P (z = 0)

(2 Marks)
We know

P (z = 1) = 0.95 P (z = 0) = 0.05

(0.5 marks for each)
and while E(y|z = 0) is unknown, marks must lie within [0, 100]. Ac-
tually with the assumption of ‘fives’, we know more:

5 ≤ E(y|z = 0) ≤ 95 (1Mark)

Going even further, we can write this out fully:

E(y|z = 0) ∈ {5, 15, 25, 35, 45, 55, 65, 75, 85, 95}

We need to calculate E(y|z = 1) and can work this out from the
revised distribution in table 1. Summing over observed i where I
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denotes the number of observations:

E(y|z = 1) =
1

I

∑
i

scorei × frequencyi

=
(5)(3) + (15)(17) + (25)(2) + (35)(10) + (45)(18)

114

+
(55)(10) + (65)(15) + (75)(21) + (85)(15) + (95)(3)

114

=
6140

114

∴ E(y) =
6140

114
(0.95) + [5, 95](0.05)

∈
[

617

12
,
671

12

]
[51.416̇, 55.916̇]

≡ H[E(y)]

which is the identification region for the average mark in the class. (1
Mark for E(y|z = 1), 2 Marks for H[E(y)])

4. From part 3

E(y|z = 1)
3
=

6140

114

= E(y|z = 0)

where the second equality follows by the imputation rule in this part
of the question uses. (0.5 Marks) So now

E(y) =
6140

114

(1 Mark)
and we get point identification rather than partial identification. (0.5
Marks) The imputation rule we used utilises a weaker assumption
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than MAR (0.5 Marks); it restricts only means, rather than the entire
probability distribution of missing data (0.5 Marks).

5. No, this statement does not accurately describe the empirical find-
ing.
We can only say that students having mothers who took maths in
college on average scored higher than those who did not have such
a mother. We cannot say that the very fact that having a mother who
studyied mathematics at college increased the probability of a stu-
dent scoring highly. (1 Mark)
Asking what would happen to this E(Y |X) when we vary X is akin
to a hypothetical change in X, where we have no data and so the re-
searcher has confused correlation with causation and has used a
counterfactual (expressing what has not happened but what might
or would happen if circumstances, i.e. data, were different). The re-
searcher is in effect extrapolating using the assumption of external
validity, which is undermined by the fact that we are only looking at
students in a particular class and we have no data on the rest of the
population of students at large. (3 Marks: 2 for pointing out, 1 for
explaining)
However, if the students were randomly assigned having mothers’
with such backgrounds, then the researcher would be correct in say-
ing that having mothers who studied maths in college increases the
probability that a student will do better on average than a student
who does not have such a mother. But since we are dealing with
what actually happened (descriptive) we cannot say that having such
a mother increases the probability that a student scores highly. (1
Mark)

Part (b): (25 Marks)
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1. Endogenous variables M = 4: C, I, T , Y . 1 mark for each.

2. Yes, the system is complete (1 Mark) since the number of endoge-
nous variables is equal to the number of equations = 4 (1 Mark).

3. Consumption equation, investment equation and tax equation are all
behavioural equations. GNP identify is an ‘equilibrium condition’ or
an ‘identity’. Half a mark for each correctly labelled equation/identity.

4. Predetermined variables K = 3: exogenous: 1, G and lagged en-
dogenous: Yt−1. 1 mark for each.

5. The structural parameters (arranged) are

C I T Y 1 G Yt−1

1 0 a2 − a1 − a0 0 0

0 1 0 0 − b0 0 − b1

0 0 1 − c1 − c0 0 0

− 1− 1 0 1 0 − 1 0

(3 Marks) Focusing on the investment function, the order condition is
checked by:

K − k = 1

m− 1 = 0

∴ K − k > m− 1

Alternatively

M +K − (m+ k) = 4

M − 1 = 3

∴ M +K − (m+ k) > M − 1
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1 Mark for either condition, 1 Mark for accurate numbers and 1 Mark
for accurate signs.
In both cases, the order condition is satistfied as a strict inequality,
so the investment function may be over identified. (0.5 marks for
‘over’ and 0.5 marks if had only said identified; 0 marks if say un-
der/just/exact identified, etc.) We say may be since the order condi-
tion is not the sufficient condition – we will know with certainty once
we have checked the rank condition, which is both necessary and
sufficient as a check for identifiability of an equation in a simultane-
ous equation model. (1 Mark) Checking the rank condition:

ΛI =

 1 a2 −a1 0

0 1 −c1 0

−1 0 1 −1


ρ(ΛI) = 3 = M − 1 = 3

(1.5 Marks for ΛI , 0.5 Marks for ρ(ΛI) = M − 1 condition, 0.25 Marks
for M − 1 = 3, 2.25 Marks for ρ(ΛI) = 3). Therefore, the investment
function is over identified, given the order condition result. (1 Mark)

Extra on how we got ρ(ΛI) = 3 = M − 1 = 3: rank cannot exceed
3, but could be 2 (look only at rows). The rank must be 3 if we can
sensibly estimate the investment function. We can go about this in
either of the following two ways; each way implies that the columns
and rows are linearly indepenent so the rank is 3. 2.5 Marks for
showing either or both of the following:

(a) Show that the determinant is non-zero:

det(ΛI) = 1 + a2c1 − a1 6= 0
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(b) Consider α1, α2 and α3 such that at least one is non-zero:

α1(1 a2 − a1 0) + α2(0 1 − c1 0) + α3(−1 0 1 − 1) = 0

which is equal to zero if and only if

α1 − α3 = 0 (2)

α1a1 + α2 = 0 (3)

−α1a1 − α2c1 + α3 = 0 (4)

−α3 = 0 (5)

Equations (5) & (2) imply that

α1 = α3 = 0

Plugging α1 = 0 into equation (3) implies α2 = 0. So

α1 = α2 = α3 = 0

but this violates our assumption that at least one α1, α2 and
α3 is non-zero. This proves that any linear combination of the
rows can only sum to zero if all coefficients α1, α2 and α3 are
identically zero – this is the definition of linear independence of
rows of a matrix.

Question 2 (50 Marks) – Limited Dependent Variables & Instrument
Variables.

Part (a): (25 Marks)

Attempt one of the following two questions.
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1)

Attempt either (i) OR (ii).

(i)

Wing is probably not a wise choice since it is not clear if wing = 1 means
left wing or right wing. (1 Mark) A better name would be something like
left or leftwing where left = 1 if candidate is left wing politically. (1 Mark)

δ0: differential in average growth of hourly wage between men and women
(differential effect of being a woman) with same level of education. (1
Mark) The benchmark group are men. (1 Mark)

Yes, we have avoided the dummy variable trap since there are two cat-
egories in our dummy variable (male and female) and we are using 1
dummy variable (female) and an intercept. (1.5 Marks) In general, we
avoid the dummy variable trap when there are g groups or categories by
including at most g − 1 dummy variables plus an intercept, or g dummy
variables and no intercept. (1.5 Marks)

The coefficient δ̂0 = −0.01 in this case means that the differential effect of
being a female is associated with a 100× δ̂0 = −1% change in wages, i.e.
women earn on average one percent less than men in hourly wages for
a given level of education. (1.5 Marks) To compute the exact percentage
difference in predicted wages for a woman relative to a man, we calculate
100[exp δ̂0 − 1] ≈ −0.995 to three decimal places. (0.5 Mark)

To allow for salary differentials across categories, with married females
as the base group, we would include all other categories as indepen-
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dent dummy variables singmale, singfem and marrmale where they cor-
respond to single males, single females and married males:

log(wage) = β0 + δ0singmale+ δ1singfem+ δ2marrmale+ β1educ+ u2

(4 Marks for equation; 2 Marks without equation but with category to ex-
clude / categories to include)

We could partition the rankings of law schools for instance into the top 10,
11-25, 26-40, 41-60 and 61-100. (2 Marks; 1 Mark extra for explaining
constant partial effects; 3 Mark for reasonable explanation of test) Sample
explanation of constant partial effects: Constant partial effects mean that
the effect of going from a school ranked say 96 to one ranked 95 has the
same effect on wages as going from a school ranked say 5 to 4. Perhaps
there is a bigger effect on wages of moving from a school ranked 5 to
4 than the effect of moving from a school ranked 96 to one ranked 95.
Partitioning, perhaps there is a bigger effect on wages in moving from
schools ranked between 11-25 into those ranked in the top 10 than moving
from schools ranked 41-60 into those ranked 26-40. Sample explanation of
testing for constant partial effects: We can test for constant partial effects
by having only one variable for ranking taking on values from one to 100
ranking:

log(wage) = β0 + β1ranking + otherfactors (6)

and allowing

log(wage) = β0 + δ1topten+ δ2secondtier + δ3thirdtier + δ4fourthtier

+δ5bottom40 + otherfactors (7)

where topten is dummy for schools ranked in top 10, secondtier is dummy
for schools ranked 11-25, thirdtier is dummy for schools ranked 26-40,
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fourthtier is dummy for schools ranked 41-60 and bottom40 is dummy for
schools ranked 61-100. Then construct an F-statistic for testing constant
patial effects restriction

F =
(R2

ur −R2
r)/q

(1−R2
ur)/(n− k − 1)

=
(R2

ur −R2
r)/q

(1−R2
ur)/dfur

where R2
ur comes from (7) and R2

r comes from (6), q = 4 here (four re-
strictions: δ1 = δ2 = δ3 = δ4 = δ5), dfur is the degrees of freedom of the
unrestricted model, which is n − k − 1 where n is the sample size and k

are is number of coefficients other than the intercept. If we get a low p-
value for the F test that H0 : δ1 = δ2 = δ3 = δ4, then we reject the null
hypothesis of constant partial effects. We can also check if breaking rank
into different groups improves things via comparing the adjusted R2 with
that from including rank as a single variable. If R2 is higher when we break
rank into different groups, then this suggests that additional flexibility is
warranted. Note that OLS depends on the random sample assumption,
but each school’s rank depends on the rank of other schools in the sample
so data here cannot represent independent draws from the population of
all law schools. This will not cause any serious problems as long as the
error term is uncorrelated with explanatory variables.

The graph for β0 > 0, δ0 < 0, β1 > 0, δ1 > 0 and β0 + δ0 > 0 is given in
figure 1.1 (2 Marks for relative intercepts, 2 Marks for relative slopes, 1
Mark extra for overall correctly specified diagram)

(ii)

The linear probability model (LPM) models dummy dependent variables
1Correction: wage label on vertical axis should be ‘log(wage)’.
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Figure 1: Differential intercept and slope for return to education between
men and women.
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y = 1 or y = 0:
y = β0 + β1x1 + · · ·+ βkxk

For example, y = 1 if you have a car and y = 0 if not; x could be income.
Note that P (y = 1|x) = E(y|x), i.e. the probability of success (e.g. owning
a car, i.e. y = 1) is the same as the expected value of y since

E(Yi|Xi) =
2∑
j=1

YijP (Yij|Xi)

= 1P (1|Xi) + 0P (0|Xi)

= P (1|Xi)

= E(Yi|Xi) ≡ Pi

= α + βXi

The second last equality sign shows why we call this the linear probability
model. So,

P (y = 1|x) = β0 + β1x1 + · · ·+ βkxk (8)

which says that the probability of success p(x) = P (y = 1|x) is a linear
function of the xj. (8) is a binary response model and P (y = 1|x) is the
response probability. We call the model a linear probability model since
the response probability is linear in the parameters βj. (This one sentence
would typically give you full / close to full marks (1.5 Marks)) The param-
eters β are not the change in y for a given change in x since how would
it make sense to say that x changes you from owning no car to owning
0.12 of a car. Intead, we look at probabilities. In the LPM, βj measures
the change in the probability of success when xj changes, holding other
factors fixed:

∆P (y = 1|x)

∆xj
= βj

(This one sentence, possibly augmented with the equation would typically
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give you full / close to full marks (1.5 Marks)) With multiple regressions:

ŷ = β̂0 + β̂1x1 + · · ·+ β̂kxk

where ŷ is the predicted probability of success so β̂0 is the predicted proba-
bility of success when each xj is set to zero (may or may not be interesting)
and the slope coefficient β̂1 measures the predicted change in the proba-
bility of success when x1 increases by one unit.

Limitations (any two, 1.5 marks each)

1. Predicts probabilities that could be less than 0 or greater than 1. Use
graph to explain.

2. Constant partial effects. Need to explain.

3. Heteroscedasticity unless probability does not depend on any of the
independent variables. No bias but t and F statistics rely on homo-
geneity even when sample size is large. Corrections: heteroscedasticity-
robust standard errors, t, F and Lagrange-Multiplier (LM) statistics
and tests for heteroscedasticity plus WLS, GLS and FGLS. To see
heteroscedasticity:

V (u) = E[u− E(u)]2 = E(u2)

=
2∑
j=1

ujP (uj)

= (1− α− βX)2(α + βX) + (−α− βX)2(1− α− βX)

= (1− α− βX)2(α + βX) + (α + βX)2(1− α− β)

= (1− α− βX)(α + βX)

= Pi(1− Pi)

To see how to use WLS: run OLS on Yi = α+ βXi + ui to get Ŷi = P̂i
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and set weights to be wi =
[
P̂i(1− P̂i)

] 1
2

and transform data as

Y ∗i =
Yi
wi

X∗i =
Xi

wi
u∗i =

ui
wi

Do not create a constant: do not need intercept – otherwise you are
producing a new variable in place of the intercept. So

V (u∗i ) = V

(
ui
wi

)
=

1

w2
i

V (ui) =
w2
i

w2
i

= 1

Run OLS on
Y ∗i = α

1

wi
+ βX∗i + u∗i

to get α̂ and β̂, which will be unbiased and asymptotically efficient.
It turns out that in many applications, OLS statistics are not too far
off and it is acceptable in applied work to present a standard OLS
analysis of a LPM.

4. Binomial errors:

Yi = 1 =⇒ ui = 1− α− βXi

and
Yi = 0 =⇒ ui = −α− βXi

Thus, ui is binomial with parameter Pi and therefore errors are non-
Normal, so Classical Linear Normal Regression model assumption
is violated, which complicates confidence intervals, F tests, t tests,
etc.

LPM:
P (y = 1|x) = β0 + β1x1 + · · ·+ βkxk
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Consider a class of binary response models of the form

P (y = 1|x) = G(β0 + β1x1 + · · ·+ βkxk) = G(β0 + xβ)

where 0 < G(z) < 1 for all z ∈ R. G ensures that the estimated response
probabilities are strictly between zero and one.

xβ = β1x1 + · · ·+ βkxk

In the logit model, G is the logistic function

G(z) =
exp(z)

1 + exp(z)
= Λ(z) ∈ [0, 1] ∀z ∈ R

In the probit model, G is the standard normal cumulative distribution func-
tion

G(z) = Φ(z) =

∫ z

−∞
φ(v)dv

where φ(z) is the standard normal density

φ(z) =
1

(2π)−
1
2

exp

(
−z

2

2

)
(Graphs of logistic function/normal cdf are unnecessary but will be taken
into account if no equations are specified; likewise discussion of odds ra-
tio / log of odds ratio for logit is unnecessary but will be taken into account
similarly.) (1.5 Marks for description of either logit/probit, 1.5 Marks for ex-
planation of G function bounding response probabilities to the unit interval
[0, 1])

Interpretations are complicated by the nonlinear nature of G(). (1.5 marks)
Need to scale βj by adjustment factor ∂G(β0 + xβ)/∂xj to measure P (y =

1|x). (1.5 Marks)
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Assume that xj is roughly continuous. Partial effect always has the same
sign as βj since G() strictly increasing cdf in logit and probit (i.e. g(z) >

0 ∀z) so partial effect of xj on p(x) depends on x through the positive
quantity g(β0 + xβ):

∂p(x)

∂xj
= g(β0 + xβ)βj

which shows that relative effects of any two continuous explanatory vari-
ables do not depend on x: ratio of partial effects for xj and xh is βj

βh
:

∂p(x)/∂xj
∂p(x)/∂xh

=
g(β0 + xβ)βj
g(β0 + xβ)βh

=
βj
βh

In the typical case where g is symmetric about zero with unique mode at
zero, the largest effect occurs when β0 + xβ = 0. For example, with the
probit:

g(z) = φ(z)

g(0) = φ(0) =
1√
2π
≈ 0.4

and for the logit:

g(z) =
exp(z)

1 + exp(z)

g(0) =
exp(0)

1 + exp(0)
=

1

1 + 1
= 0.5

When x1 is a binary explanatory variable, then the partial effect from chang-
ing x1 from zero to one holding all other variables fixed is

G(β0 + β1 + β2x2 + · · ·+ βkxk)−G(β0 + β2x2 + · · ·+ βkxk) (9)

which depends on all the values of the other xj. The sign of β1 is suffi-
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cient to see if the program had a postive or negative effect, but to find the
magnitude, we must estimate the quantity in (9). We can use (9) for other
kinds of discrete variables (e.g. number of children, xk), so the effect on
the probability of xk going from ck to ck + 1 is:

G[β0 + β1x1 + β2x2 + · · ·+ βk(ck + 1)]−G(β0 + β1x1 + β2x2 + · · ·+ βkck)

This measures the effect of discrete variables. Note that we must use
estimates:

∆ ̂P (y = 1|x) ≈ [g(β̂0 + xβ̂)β̂j]∆xj

where the ≈ sign reflects the fact that xj are roughly continuous. This
means that for small changes ∆xj = 1 say, the effect of xj in response
probability P (y = 1|x) will be

∆ ̂P (y = 1|x) ≈ g(β̂0 + xβ̂)β̂j

So the cost of using logit/probit is that the partial effects here are harder to
summarize since the scale factor g(β̂0 + xβ̂) depends on x (all of the ex-
planatory variables). We can plug in values for xj like means, etc. and see
how g(β̂0 + xβ̂) changes. One method in econometrics packages: replace
each explanatory variable with the sample average, i.e. adjustment factor
is

g(β̂0 + x̄β̂) = g(β̂0 + β̂1x̄1 + β̂2x̄2 + · · ·+ β̂kx̄k) (10)

where g() is N(0, 1) (probit) and g(z) = exp(z)
[1+exp(z)]2

(logit). The idea is that
when we multiply (10) by β̂j, we get the partial effect of xj for the average
person in the sample.
(4 Marks for a reasonable discussion of calculating partial effects for either
logit or probit)

Maximum likelihood estimation due to nonlinear nature of E(y|x), which
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renders OLS and WLS inapplicable. (1 Mark for mentioning MLE, 1 Mark
for mentioning nonlinear nature compilcates OLS/WLS; 2 Marks for elab-
orating) Sample elaboration: Could use NLLS/NWLWLS. With MLE, het-
eroscedasticity is acounted for:

f(y|xi;β) = [G(xiβ)]y[1−G(xiβ)]1−y y = 0, 1 (11)

where the intercept is in the vector x. When y = 1, we have G(xiβ) and
when y = 0, we have 1−G(xiβ). The log-likelihood function for observation
i is a function of the parameters and the data (xi, yi) and is simply the log
of (11):

`i(β) = yi log[G(xiβ)] + (1− yi) log[1−G(xiβ)]

Since G() is strictly between 0 and 1 for logit and probit, `i(β) is well-
defined for all values of β

L(β) =
n∑
i=1

`i(β) (12)

MLE of β: β̂ maximises (12). If G() is the standard logit/normal cdf, then
β̂ is the logit/probit estimator.
An alternative attempt at this question might be the following. Suppose we
have data Y = 1, 1, 0, X = X1, X2, X3 and P = P1, P2, P3. If OLS/WLS
are inappropriate, we can use MLE, which maximises the probability of
the observed sample of data. The problem is to choose α, β to maximise
L(α, β|data) where the likelihood equation for the logit say is

L = ΠiPiΠj(1− Pj)

= Πi
eα+βXi

1 + eα+βXi
Πj

eα+βXj

1 + eα+βXj

We can differentiate this with respect to z and put this first order conditions
equal to zero and solve for z. This would be done numerically, not analyt-
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ically. Maximum likelihood calculations are difficult, but done routinely in
econometrics packages.

The LR test is the same concept as F in a linear model. While F measures
the increase in SSR when variables are dropped from a model, the LR
test is based on differences in log-likelihood functions for unrestricted and
restricted models. The idea is that because MLE maximises log-likelihood,
dropping variables generally leads to a smaller or at least no larger log-
likelihood.

LR = 2(`ur − `r)

Since `ur ≥ `r, LR is nonnegative and usually strictly positive. LR has
approximately chi-square distribution under H0 and if we are testing q ex-
clusion restrictions

LR
a∼ χ2

q

For example, to test the hypothesis that H0 : β = 0 versus H1 : β 6= 0, con-
sider LR = L0

L1
, which will be the opposite of R2. When LR is low, we might

have a situation where R2 for model one is high since the deviations are
low and R2 for model zero is low because the deviations are high. When
LR is high, there may be a very small difference. See figure 2. We can
estimate the model with variables and without variables. If the restrictions
are valid, then x has no business in the model, which implies that we can
impose restreictions that should not affect the likelihood, i.e. LR ≈ 1 if
restrictions are valid; else, L0 ≈ 0 so LR ≈ 0, i.e. we need x. This is the
intuitive interpretation of LR. The test statistic is −2ln(LR)

a∼ χ2
k where k

is the number of exclusion restrictions and ln is the natural logarithm. At
a signficance level of α = 5%, we reject H0 if −2ln(LR) > χ2

k,0.05 or if the
p-value is less than 0.05; else we fail to reject the null hypothesis.
(Up to 4 Marks depending on elaboration and clarity)

1. Alternatives to R2 include McFadden’s R2 = 1 − ln(L1)
ln(L0)

where ln(L)
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Figure 2: LR test.
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is the log likelihood and subscripts 1 and 0 denote alternative and
null model, respectively (null is where β = 0 and alternative is where
β 6= 0); this will lie in [0, 1].

2. Another alternative is Aldrich & Nelson’s ‘pseudo’ R2:

R2 =
D

N +D

where D = −2ln(LR) and N is the sample size.

3. Yet another alternative is the count R2, which is also known as the
proportion of accurate predictions. If the model predicts that P (yi =

1) = Pi >
1
2

and yi = 1, then we have a ‘correct’ prediction and if the
model predicts that P (yi = 1) = Pi <

1
2

and yi = 0, then we have a
‘correct’ predictrion.

(Any two of last three, 1 Mark each: half a mark for name, half a mark for
description)
So, the proportion of correct predictions is given by the ratio

number correct predictions
number total observations

=
491

690
= 71.2% = Count R2

(1 Mark: 1
2

for correct equation, 1
2

for correct answer)

OR

2)

Attempt either (i) OR (ii) OR (iii).

(i)
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Yes, since Tobit models describe corner solutions (lots of zeros in the dis-
tribution and then positive values away from zero) and since many wives
will have no extramarial affairs and then some will have positive numbers of
extramarital affairs, possibly even up to tens or hundreds, the Tobit model
is apt. (Need explanation for full marks; 0.5 Marks if say yes with no ex-
planation)

We estimate Tobit models by maximum likelihood (2 Marks). (Reason-
able explanation of MLE: 3 Marks)
Sample explanation of MLE: Since y∗ is Normal, y has continuous distri-
bution over strictly positive values. In particular, the density of y given x is
the same as the density of y∗ given x for positive values. Further:

P (y = 0|x) = P (y∗ < 0|x) = P (u < −xβ|x)

= P

(
u

σ
< −xβ

σ
|x
)

= Φ

(
−xβ

σ

)
= 1− Φ

(
xβ

σ

)
since u

σ
is N(0, 1) and is independent of x; for notationaly simplicity, the

intercept is subsumed within x. If (xi, yi) is a random draw from the popu-
lation, then the density of yi given xi is given by

(2πσ2)−
1
2 exp

[
−(yi − xiβ)2

(2σ)2

]
=

1

σ
φ

[
yi − xiβ

σ

]
yi > 0 (13)

P (yi = 0|xi) = 1− Φ

(
xiβ

σ

)
(14)

From (13) & (14), we can obtain the log-likelihood function for each obser-
vation i:

`i(β, σ) = 1(yi = 0) log

[
1− Φ

(
xiβ

σ

)]
+ 1(yi > 0) log

{
1

σ
φ

[
yi − xiβ

σ

]}
(15)

The log-likelihood for random sample of size n is obtained by summing (15)
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across all i. Note the dependence on σ (standard deviation of u) and βj.
MLE of β and σ require numerical methods (mostly done easily on a pack-
aged routine).

We cannot interpret β̂j from Tobit MLE the same as from linear model
OLS. Computers produce Tobit MLE with not much more pain than OLS
for linear models, so it is tempting to interpret βj similarly, though we should
not do this. Note that

βj =
∂E(y∗|x)

∂xj

so βj measures the partial effects of xj on E(y∗|x).
(2 Marks for equation or in words; 1 Mark only if discuss pain of interpreting
without specifying clear interpretation)
We may want to explain y (observed outcome, e.g. hours worked). We can
estimate P (y = 0|x) from (14) and this allows us to estimate P (y > 0|x),
but we may want to estimate the expected value of y as a function of
x. Given E(y|y > 0,x), we can find E(y|x) through the law of iterated
expectations (LIE):

E(y|x)
LIE
= P (y > 0|x) · E(y|y > 0,x) = Φ

(
xβ

σ

)
· E(y|y > 0,x) (16)

To get E(y|y > 0,x) use the result that z ∼ N(0, 1) implies that E(z|z >

c) = φ(c)
1−Φ(c)

for any constant c. But:

E(y|y > 0,x) = xβ + E(u|u > −xβ)

= xβ + σE

[
u

σ
|u
σ
> −xβ

σ

]
= xβ +

σφ
(
xβ
σ

)
Φ
(
xβ
σ

)
since φ(−c) = φ(c), 1−Φ(−c) = Φ(c) and u

c
has standard Normal distribu-
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tion independent of x. So

E(y|y > 0,x) = xβ + σλ

(
xβ

σ

)
(17)

where λ(c) = φ(c)
Φ(c)

is called the inverse Mills ratio. Since Φ
(
xβ
σ

)
λ
(
xβ
σ

)
=

φ
(
xβ
σ

)
, combining (16) & (17) gives

E(y|x) = Φ

(
xβ

σ

)[
xβ + σλ

(
xβ

σ

)]
= Φ

(
xβ

σ

)
xβ + σφ

(
xβ

σ

)
(18)

Equation (18) shows when y follows a Tobit model, E(y|x) will be a non-
linear function of x and β and the right-hand side will be strictly positive
for all values of x and β. With β estimates, we can be sure that predicted
values for y (estimates of E(y|x)) are positive, but this comes at a cost:
equation (18) is more complicated than a linear model. (Tobit is a nonlin-
ear model, which is complicated, but it ensures that E(y|x) > 0).
(4 Marks for conceptual / intuitive explanation of above)
The partial effects of xj on E(y|y > 0, x) and E(y|x) have the same sign
as the coefficient βj but the magnitude of the effects depend on values
of all explanatory variables and parameters. Since σ appears in (18), the
partial effects depend on σ also. This is an extra complication of the Tobit
relative to the logit/probit models. Let xj be continuous and assume xj is
not related to other regressors. Then

∂E(y|y > 0,x)

∂xj
= βj + βj ·

dλ

dc

(
xβ

σ

)

Differentiating λ(c) = φ(c)
Φ(c)

using dΦ
dc

= φ(c) and dφ
dc

= −cφ(c), we get that

λ′(c) =
−cΦ(c)φ(c)− φ2(c)

Φ2(c)

= −cλ(c)− λ2(c) = −λ(c)[c+ λ(c)]
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and so

∂E(y|y > 0,x)

∂xj
= βj

{
1− λ

(
xβ

σ

)[
xβ

σ
+ λ

(
xβ

σ

)]}
(19)

Estimate (19) by plugging in MLEs of βj and σ. The subtlety is that σ
appears in the partial effects directly so it is crucial to estimate this for es-
timatig partial effects; σ is called the ‘ancillary’ parameter. Equation (19)
shows the partial effect of xj on E(y|y > 0,x) is not determined just by βj –
there is an adjustment factor in brackets that depends on a linear function
of x.
(2.5 Marks for conceptual/intuitive description of above; 2.5 Marks for con-
ceptual/intuitive description of below) Also note that

∂E(y|x)

∂xj
=
∂P (y > 0|x)

∂xj
·E(y|y > 0,x)+P (y > 0|x) · ∂E(y|y > 0,X)

∂xj
(20)

and since P (y > 0|x) = Φ
(
xβ
σ

)
∂P (y > 0|x)

∂xj
=
βj
σ
φ

(
xβ

σ

)
We can estimate each term in (20) once we plug in MLEs of βj and σ and
particular values of the xj.

We can roughly compare OLS and Tobit estimates from

∂E(y|x)

∂xj
= βjΦ

(
xβ

σ

)
We simply multiply Tobit estimates by the adjustment factor Φ

(
xβ
σ

)
to com-

pare Tobit estimates with OLS estimates. (1.5 Marks) OLS slope coeffi-
cients (e.g. γ̂j from regressing yi on xi1, xi2, . . . , xik where i = 1, . . . , n, i.e.
using all of the data) are direct estimates of ∂E(y|x)/∂xj. To make Tobit
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coefficients β̂j comparable to γ̂j, we multiply β̂j by an adjustment factor,
Φ
(
xβ
σ

)
, which we can compute following two approaches:

1. Evaluate Φ
(

xβ̂
σ̂

)
at sample averages to obtain Φ

(
x̄β̂
σ̂

)
.

2. Average the individual adjustment factors n−1
∑n

i=1 Φ
(

x̄iβ̂
σ̂

)
.

For comparing scaled Tobit coefficients to OLS coefficients, the second
scale facgtor generally is more appropriate. Both scale factors tend to be
closer to one when there are relatively few observations with yi = 0. In
the extreme cases that all yi > 0, Tobit and OLS estimates are identical.
With discrete explanatory variables, comparing OLS and Tobit estimates
is not so easy; however, scale factor for continuous explanatory variables
is often a useful approximation. (1.5 Marks for reasonable elaboration on
adjustment factor)

Regarding how we can informally evaluate whether Tobit is appropriate,
we should first estimate a probit where

w =

1 y > 0

0 y = 0

Then from (14), i.e.

P (yi = 0|xi) = 1− Φ

(
xiβ

σ

)
w follows a probit model where the coefficient on xj is γj =

βj
σ

so we can
estimate the ratio of βj to σ by probit for each j. If the Tobit model is ad-
equate, then the probit estimate γ̂j should be close to β̂j/σ̂ where these
are Tobit estimates. They need never be identical due to sampling error
but warnging signs include different signs or same signs and much dif-
ferent magnitude differences; sign changes or magnitude differences on
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explanatory variables that are insignificant in both models should not be a
cause for concern.
(3 Marks; 2 Marks if no discussion)

(ii)

A count variable is a variable that can be zero or take on a few (and only
a few) different values. Examples may include the number of times an in-
dividual is arrested in a year, the number of times someone was sick in a
given month, the number of chilren ever born to a woman, the number of
times a person was ever married, etc. Since the logarithm of zero does not
exist (the exponential of zero is one) and count variables are designed to
account for corner solutions, i.e. where there are a lot of zeros, we cannot
use logarithms. (1 mark for definition of count variable, 2 marks for any
appropriate example and 2 mark for explaining why we cannot use loga-
rithms)

Observe that since

E(y|x1, x2, . . . , xk) = exp(β0 + β1x1 + · · ·+ βkxk) (21)

the log of expected value will be linear. (3 Marks)

100βj is the approximate change in E(y|x) given a one-unit increase in xj,
i.e.

%∆E(y|x) ≈ (100βj)∆xj

When a more accurate estimate is needed, we can look at discrete changes
in the expected value. Keep all explanatory variables except xk fixed and
let x0

k be initial value and x1
k be subsequent value. Proportionate change
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in expected value is[
exp(β0 + xk−1βk−1 + βkx

2
k)

exp(β0 + xk−1βk−1 + βkx0
k)

]
− 1 = exp(βk∆xk)− 1

where xk−1βk−1 = β1x1 + · · ·+ βk−1xk−1 and ∆k = x1
k − x0

k. If ∆xk = 1 (e.g.
xk takes two values, either 0 or 1 and this time we go from 0 to 1), then
the change in the expected value of y|x is exp(βk)− 1. Given β̂k, we obtain
exp(β̂k)− 1 and multiply by 100 to turn proportionate change into percent-
age change. If βj multiplies log(xj), then βj is an elasticity. (4 Marks for
reasonable discussion of interpretting βj)

Since (21) is nonlinear in parameters due to the exponential function, we
cannot use linear regression methods to estimate the Poisson model. We
could use nonlinear least squares, but all standard count distributions are
heteroscedastic and nonlinear least squares does not exploit this so we
rely on maximum likelihood estimation (2 Marks just for mentioning
MLE) and an important related method of quasi-maximum likelihood es-
timation. A count variable cannot have a Normal distribution because the
Normal distribution is for continuous variables that can take on all (or a
large range approximately) of values and as a count variable takes on
very few values, the distribution is very different from a Normal; instead,
we use the Poisson distribution for count data. Writing the right-hand side
of (21) as exp(xβ), the probability that y = h|x is

P (y = h|x) =
1

h!
e−e

−xβ (
exβ
)h

h = 0, 1, . . .

Given a random sample {(xi, yi) : i = 1, . . . , n}, likelihood is

L(β) = ΠiP (yi)

= Πi
1

y1!
e−e

xiβ
(
exiβ

)yi
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and so the log-likelihood is

`(β) =
n∑
i=1

`i(β)

=
n∑
i=1

yixiβ − exiβ − log(yi!)

but note that log(yi!) does not contain β so it does not affect the maximi-
sation of the log-likelihood, so we can concentrate on

`(β) =
n∑
i=1

yixiβ − exp(xiβ)

Poisson MLEs are not obtained in closed form but econometric packages
(e.g. Stata) can estimate these models via maximum likelihood with ease.
(3 Marks for elaboration)

While Poisson MLE is a natural first step for count data, it’s often too re-
strictive since all probabilities and higher moments of Poisson distributions
are determined entirely by the mean, e.g.

V ar(y|x) = E(y|x)

This has been shown to be violated in many applications. (4 Marks)

Fortunately, the Poisson distribution has a nice robustness property: whether
or not the Poisson distribution holds, we still get consistent, asymptotically
Normal estimates of βj like the Normality assumption of OLS (consistent
and asymptotically Normal irrespective of the Normality assumption). (2
Marks) When we use Poisson MLE but do not assume that the Poisson
distribution is entirely correct, we call the analysis quasi-maximum likeli-
hood estimation (QMLE); most econometric packages do this. (2 Marks)
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(iii)

When a significant fraction of the population under investigation has been
censored, censored models may be useful. Censored models take ac-
count of data observability. An example of data censoring is when we
know individuals’ income up to a point and thereafter we only know that
they earn over the threshold. Censoring can arise from survey design.
Perhaps there is a box that individuals can tick if they earn over 500, 000

Euros but if they earn less than this, they write in the exact figure. All other
covariates, e.g. male/female, level of education, etc. that they have to
respond to may be observed, but we only observe income up to 500, 000

and we only know whether an individual earns more than 500, 000 – we do
not observe how much exactly. Focusing on the censored normal regres-
sion model, y follows the classical linear model and letting i emphasise a
random draw from the population

yi = β0 + xiβ + ui ui|xi ci ∼ N(0, σ2)

wi = min(yi, ci)

When we only observe yi if it is less than a censoring value ci, we say that
we have censoring from above (right censoring); top coding is an example
of right data censoring – we know its value only up to a certain thresh-
old; for responses greater than the threshold, we only know the variable
is at least as large as the threshold; e.g. family wealth in some surveys
is top coded: can respond ‘more than 500, 000 Euros and in this case ci

censoring threshold is the same for all i; in many cases ci changes with
individual/family characteristics.
(1.5 Marks for reasonable discussion)
We can estimate β and σ2 by maximum likelihood given a random sam-
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ple (xi, wi). (1.5 Marks for mentioning maximum likelihood; extra 1 Mark
for elaborating) We need the density of wi given (xi, ci). For uncensored
observatios wi = yi and the density of wi is the same as yi. For censored
observations, we need:

P (wi = ci|xi) = P (yi ≥ ci|xi) = P (ui ≥ ci − xiβ) = 1− Φ

[
ci − xiβ

σ

]
Combine these two parts to obtain density of wi given xi and ci:

f(w|xi, ci) =

1− Φ
[
ci−xiβ

σ

]
w = ci

1
σ
φ
[
w−xiβ
σ

]
w < ci

We can obtain the log-likelihood for observation i by taking the natural log
of the density for each i. We can maximise the sum of these across i with
respect to βj and σ to get MLEs.
We can interpret βj just as in linear regression under random sampling –
this is different to Tobit say where expectations of interest are nonlinear
functions of the βj.
(2 Marks)
When the data is truncated, we should use a truncated regression model.
Truncation means that we throw out or do not use data under some given
rule. For example, we may decide to only study individuals who earn up to
1.5 times the income at the poverty line. We do not include any data on any
covariate on any individual who earns more. (2 Marks) Unlike a censored
regression model, with truncated regression models, we do not observe
any information about a certain segment of the population. The truncated
regression model differs from the censored regression model since there
we observe xi for any randomly drawn observation from the population; in
the truncated model, we only observe xi if yi ≤ ci. (2 Marks)

The truncated normal regression model begins with an underlying popula-
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tion model that satisfies Classical linear regression model assumptions:

y = β0 + xβ + u u|x ∼ N(0, σ2)

Given a random sample from the population, OLS is the most efficient
estimation procedure. However, we do not observe a random sample from
the population – there is a clear deterministic rule truncating the data. A
random draw (xi, yi) is only observed if yi ≤ ci where ci is the truncated
threshold that can depend on exogenous variables, in particular xi so if
{(xi, yi) : i = 1, . . . , n} is our observed sample, then yi is necessarily less
than or equal to ci. So to estimate βj and σ we need the distribution of
yi|yi ≤ ci,xi

g(y|xi, ci) =
f(y|xiβ, σ2)

F (ci|xiβ, σ2)
y ≤ ci (22)

where f ∼ N(β0 + xiβ, σ
2) and F is a Normal cumulative distribution func-

tion with the same mean and variance evaluated at ci. We are renormal-
ising the density by dividing the area under f(·|xiβ) that is to the left of
ci. We take logarithms of (22), sum across i and maximise the result with
respect to βj and σ2 to get the maximum likelihood estimates, leading to
consistent, approximately Normal estimators; inference is standard includ-
ing standard errors.
(2 Marks for mentioning maximum likelihood estimation and an extra 2
marks for elaborating)
OLS applied to a sample truncated from above generally gives estimates
biased towards zero. (1 Mark) See figure 3. (1 Mark for graph)

If the sample is selected on the basis of the dependent variable, we have
endogenous sample selection. (1 Mark) If sample selection is determined
solely by an exogenous explanatory variable, then we have endogenous
sample selection. (1 Mark)

34



Figure 3: Truncated models: OLS biased towards zero.
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Incidental truncation: can only observe income for those who work —
wage offer is assumed to be the observed wage so truncation of wage of-
fer is incidental because it depends on another variable, viz. labour force
participation. Usual approach to incidental trunation is to add an explicit
selection equation to the population model of interest

y = xβ + u E(u|x) = 0 (23)

s = 1[zγ + v ≥ 0] (24)

where s = 1 if observe y and 0 otherwise. Assume elements of x and z are
always observed. Our main interest is (23) and we can estimate β by OLS
given a random sample. The selection equation (24) depends on observed
variables zh and an unobserved error v. The standard assumption is that
z is exogenous in (23):

E(u|x, z) = 0

For the following proposed methods to work well, we will require x to be
a strict subset of z: any xj is also an element of z and we have some
elements of z that are not also in x. Assume that v is independent of z

(and thus v is independent of x) and that v ∼ N(0, 1). The correlation
between u and v generally causes a sample selection problem. Assume
u, v are independent of z. Using the fact that x is a strict subset of z, take

E(y|z, v) = xβ + E(u|z, v) =
(u,v)⊥⊥z

= xβ + E(u|v)

If (u, v) are jointly Normal with zero mean, then E(u|v) = ρv for some
parameter ρ. So

E(y|z, v) = xβ + ρv

We do not observe v, but we can use this equation to compute E(y|z, s)
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and then specialise this to s = 1 to get

E(y|z, s) = xβ + ρE(v|z, s)

Since s and v are related by (24) and v ∼ N(0, 1), we can show that
E(v|z, s) is simply the inverse Mills ratio λ(zγ) when s = 1, so

E(y|z, s = 1) = xβ + ρλ(zγ)

Remember that we want to estimate β and this equatio shows that we can
using only the selected sample as long as we include the term λ(zγ) as
an additional regressor. If ρ = 0, λ(zγ) does not appear and OLS of y on
x using the selected sample consistently estimates β. Else we have an
omitted variable λ(zγ), which is genneraly correlated with x. When does
ρ = 0? When u and v are correlated. Since γ is unknown, we cannot
evaluate λ(ziγ) for each i, but from assumptions so far, s given z follows
the probit:

P (s = 1|z) = Φ(zγ)

This follows because since v ∼ N(0, 1) and v is independent of z

P (s = 1|z) = P (zγ + v ≥ 0|z)

= P (v ≥ −zγ|z)

= 1− Φ(−zγ)

= Φ(zγ)

We can estimate γ by a probit of si on zi using the entire sample. In
the second step, we can estimate β. This is called the Heckit method
after Heckman (1976) – James Heckman of Chicago University – who won
the Nobel prize in 2000 for this (sample selection correction). The Heckit
method for sample selection corrections in the case of incidental truncation
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is composed of two steps:

1. Using all n observations, estimate probit of si on zi and obtain es-
timates γ̂h. Compute the inverse Mills ratio λ̂i = λ(ziγ̂) for each i.
Actually, we only need these for i such that si = 1.

2. Using the selected sample, i.e. observations for which si = 1 (say n1

of them), run the regression of yi on xi, λ̂i.

The β̂j are consistent and approximately Normally distributed.
(2 Marks for intuitive explanation of Heckit method; 2 Marks for elaboration
and specifics)

A simple test of selection bias is available from regressing yi on xi, λ̂i: use
the usual t statistic on λ̂i as a test of H0 : ρ = 0. Under H0, there is no
sample selection problem. If ρ 6= 0, then OLS standard error from this re-
gression are not exactly correct since they do not account for estimation of
γ, which uses the same observations in this regression and more. Some
econometric packages compute the corrected standard errors, which are
not as simple as the heteroscedasticity-adjusted standard errors. In many
cases, adjustments do not lead to important differences but it is hard to
know that beforehand unless ρ̂ is small and insignificant.
(3 Marks – unnecessary to elaborate as long as answer is specific)

Part (b): (25 Marks)

• First part: 1 mark definition, up to 2 marks for explanation / discus-
sion.
A regressor is endogenous if it is correlated with the error term in
the structural equation: Corr(educ, u) 6= 0, violating the Classical as-
sumption that regressors are exogenous (Corr(x, u) = 0). (1 Mark)
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Sample discussion: It could be that there is simultaneity between
wages and education in that a higher return to education may inspire
people to invest in human capital. If parents earn high incomes, they
might emphasise the importance of education to their children by in-
vesting their money in their child’s education. As individuals start
earning higher wages, they may decide to invest more in their edu-
cation or increase their skills through further education. In this case,
a higher wage enables individuals to return to school or college to
take extra courses. This is quite common in the medical profes-
sion in terms of specialists. As they become more specialised, in
certain fields like pediatrics, doctors must constantly educate them-
selves about the latest developments and often do so through part-
time special masters courses. Perhaps individuals with high ability
tend to also have more years of education. Ability might positively af-
fect wage, cet. par.. Endogeneity can result from omitted variables,
measurement errors and simultaneity, among other things.

• It might be that we have an omitted variable (subsumed in the error
term) that education is correlated with (e.g. ability (1 Mark)).

• If we leave ability out of our model, our estimates will be subject to
omitted-variable bias (1 Mark) and also be inconsistent (sampling
distribution does not collapse to the true value of the parameter we
want to estimate) (1 Mark).

• Definition: An instrumental variable (IV) z is such that

1. Corr(z, x) 6= 0 – z is valid instrument for x. (1 Mark)

2. Corr(z, u) = 0 – z is a predetermined variable. (1 Mark)

So, an IV z for educ must be (i) correlated with education and (ii) un-
correlated with u (ability and any other unobserved factors affecting
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wage).
Typically, when parents have a lot of education, there children have
a lot education and vice-versa; hence z3 and z4 are valid instruments
as assumption 1 holds. We can test Cov(z, x) 6= 0 by estimating

x = π0 + π1z + v

and since π1 = Cov(z, x)/V ar(x), Cov(z, x) 6= 0 if and only if π1 6= 0,
thus we should be able to reject the null hypothesis

H0 : π1 = 0

against two-sided alternative H0 : π1 6= 0 at a sufficiently small signif-
icance level (say 5% or 1%). If this is the case, then we can be fairly
confident that Cov(z, x) 6= 0.
Whether parents’ education is correlated with any unobserved fac-
tors affecting wage is generally untestable as we do not observe
these factors; we usually appeal to economic behaviour or introspec-
tion or simply assume there is no such correlation. (1 Mark for a
reasonable discussion of why education might be correlated with ed-
ucation and possibly uncorrelated with u)

• The number of siblings an individual has might be a better alterna-
tive. (1 Mark)
1 Mark for discussion of why better, requires arguing number of sib-
lings satisfies instrumental variables assumptions and why parents’
education may not.
Sample discussion: Typically, it is observed that education and the
number of siblings are inversely related – individuals from large fam-
ilies tend to have less education relative to individuals from smaller
families. So, number of siblings would seem to satisfy assumption 1,
i.e. (Cov(z, x) 6= 0). As to why Cov(z, u) = 0, the number of siblings
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has probably nothing to do with the ability of an individual and pos-
sibly other unobserved factors that affect wage. However, perhaps
mother’s / father’s education is correlated with ability to the extent
that if a mother has a lot of education, it may be that she has/had
a high level of ability and this was passed on to her child. If so,
mother’s education would be correlated with ability of the individual,
which is unobserved and part of the error term; hence, we could have
Cov(z, u) 6= 0 and so assumption 2 would not hold.

• 2SLS is less efficient than OLS if explanatory variables are exoge-
nous – large standard errors – so we might want to test for endo-
geneity. (1 Mark)

• Hausman (1978) test for endogeneity of y2 = educ:

log(wage) = β0 + β1educ+ β2exper + β3exper
2 + u1 (25)

y2 = π0 + π1z1 + π2z2 + π3z3 + π4z4 + v2 (26)

where z1 = exper, z2 = exper2, z3 = motheduc, z4 = fatheduc and
equation (26) is the reduced form equation for y2 (reduced form since
all regressors on right-hand side are exogenous/predetermined (in
this case all are exogenous – no lagged endogenous variables)).
Equation (25) is the structural equation. We want to test for possible
endogeneity of y2 = educ. If all z’s are exogenous, then they are all
uncorrelated with u1, the disturbance term from the structural equa-
tion, i.e. Corr(zj, u1) = 0 for j = 1, 2, 3, 4. This implies that the only
way y2 is endogenous, i.e. Corr(y2, u1) 6= 0 is if Corr(v2, u1) = 0. We
want to test whether in fact Corr(v2, u1) = 0. Let u1 = δ1v2 +e1 where
Corr(e1, v2) = 0 and E(e1) = 0; so, we have expressed the structural
disturbance term u1 as a linear function of v2; if u1 is a linear function
of v2, then clearly v2 and u1 are related, i.e. Corr(v2, u1) 6= 0. We
want to test this, i.e. we want to test whether δ1 = 0 since if δ1 = 0,
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then u1 = e1, i.e. u1 is not a function of / related to v2. We could
test this by putting v2 as an extra regressor in (26) and doing a t-test;
however, we do not observe v2. Hausman proposed a neat solution.
We estimate the reduced form (26) by OLS to get

ŷ2 = π̂0 + π̂1 + π̂2z2 + π̂3z3 + π̂4z4

and then simply recognize that y2 − ŷ2 = v̂2; and so we get v̂2. Next
we use v̂2 as an additional regressor in (26). To do this, recall that
we let u1 = δ1v2 + e1, so simply replace v2 by v̂2 and substitute this
for u1 in (25) to get

y1 = β0 + β1y2 + β2z1 + β3z2 + δ1v̂2 + error (27)

Run OLS on (27) and do a t-test of H0 : δ1 = 0. Rejection implies
endogeneity since Corr(v2, u1) 6= 0. (6 Marks)

The reduced equation for educ is

educ = π0 + π1exper + π2exper
2 + π3motheduc+ π4fatheduc+ v2 (28)

and identification requires that at least one of π3 and π4 is non-zero, i.e.
π3 6= 0 or π4 6= 0 or both. Testing H0 : π3 = 0, π4 = 0 in (28) using an F-test,
we get F = 55.40 and p-value = .0000. As expected, educ is (partially)
correlated with parents’ education. (2 Marks)

STATA PART:

• The estimated return to education is about 6.1%. (2 Marks)

• The 2SLS estimate is barely statistically significant at the 5% level
against a two-sided alternative due to its relatively large standard
error. (1 Mark)
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• No, R2 = .136 is not a cause for concern. (1 Mark) 2SLS R2 can
be negative since R2 = 1 − SSR/SST is negative if SSR > SST so
not very useful to report R2 for 2SLS estimation. When regressors
are endogenous Corr(x, u) 6= 0 say, we cannot decompose the vari-
ance of y into β2

1V ar(x) +V ar(u) so R2 has no natural interpretation.
Goodness of fit is not a factor – goal of IV / 2SLS is to provide better
estimates of cet. par. effect of x on y when x and u are correlated. If
goal is to produce the largest R2, always use OLS but high R2 from
OLS is of little comfort if we cannot consistently estimate β1. (1 Mark:
only need one of these sentences)
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