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Problem Set 1: Identification & Limited Dependent Variables

Identification

Exercise 1 (10 Marks). Let Y , X and U be random variables where the unobservable U comes from a
standard Normal distribution, i.e. U ∼ N(0, 1), where

Y = α+ βX + U (1)

Suppose we know the distribution of X (it is independent of α and β) and we know that X ⊥⊥ U . Are α
and β identified by (1)? If yes, then prove it. If no, then display two or more values of the parameters for
which the distribution of Y is the same.

Solution 1 (Identifiability).

Claim 1. θ = (α, β) is identified by (1).

Proof. If θ is not identified, then for any θ, there exists θ′ 6= θ such that

P (Y ≤ t|X; θ) = P (Y ≤ t|X; θ′)

Since we know the distribution of X, we can restrict ourselves only to conditional distributions, since we
know the distribution of x.

P (Y ≤ t|X; θ) = P (α+ βX + U ≤ t|X; θ)

= P (U ≤ t− α− βX|X; θ)

= Φ(t− α− βX)

where Φ is the cumulative Normal distribution function. Suppose that for all X

Φ(t− (α+ βX)) = Φ(t− (α′ + β′X))

Since Φ is one-to-one, it follows that for all X

t− (α+ βX) = t− (α′ + β′X)

=⇒ (β′ − β)X = α− α′

=⇒ α = α′ and β = β′

Exercise 2 (20 Marks). INPUTM12.txt is a data file that contains 869 observations of American white male
respondents in the National Longitudinal Study of Youth (NLSY). Each record consists of values for the
variables (y, z, f , m), which are defined by:

y = indicator of high school completion (1 = yes, 0 = no)

z = indicator of family status at age 14 (1 = intact, 0 = non-intact family)

f = father’s years of schooling

m = mother’s years of schooling

Suppose that the mother of an American white male has 12 years of schooling and you are asked to predict
high school graduation. Assume that the 869 observations are a random sample of American white males.
Use Stata software to do the following:

1. Estimate the best linear predictor of y given (m = 12) under square loss, by ordinary least squares.
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2. Compute kernel estimates of E(y|m = 12) using uniform and Gaussian kernels and bandwidths 0.5,
1.5 and 4.5; hence, there are six estimates in total.

3. Discuss the estimates computed under 1 and 2.

Solution 2 (Stata – kernreg).

1. The best linear predictor of (Y |M = 12), under square loss is given by the mean. Using an OLS
regression to estimate the coefficient of the constant, the following Stata code 1 produces the estimate.

i n f i l e y z f m us ing INPUTM12. txt , c l e a r

r e g r e s s y m
p r e d i c t yhat
l i s t yhat i f m==12

Listing 1: BLP of y given m = 12 under square loss by OLS.

This yielded the expectation of Y |M = 12

E(Y |M = 12) = .8434434

which is the best linear predictor of Y |M = 12, under square loss.
Note that the OLS estimation of E(Y |M = 12) reduces to the non-parametric estimator of E(Y |M =
12) when the covariates have positive probability (true since M is discrete and the data contains a
subset where M = 12):

Ê(Y |M = 12)OLS =

∑N
i=1 xiyi∑N
i=1 x

2
i

=

∑N ′

i=1 xiyi∑N ′

i=1 x
2
i

=

∑N
i=1 yi · 1[Mi = 12]∑N
i=1 1[Mi = 12]

= EN (Y |M = 12)

where N is the sample size (869), N ′ < N is the number of observations for which M = 12 and
xi = 1 ∀i : Mi = 12.

2. The kernel estimates of E(Y |M = 12) computed with the kernreg function, using the code shown
in listing 2, are recorded in table 1. The Uniform Kernel (local average) and Gaussian Kernel (local
weighted average) estimates were calculated as

θN (M = 12, dN ) =

∑N
i=1 yi · 1[ρ(Mi,M = 12) < dN ]∑N
i=1 1[ρ(Mi,M = 12) < dN ]

(Uniform)

EN (Y |M = 12) =

∑N
i=1 yi ·K

[
ρ(Mi,M=12)

dN

]
∑N
i=1K

[
ρ(Mi,M=12)

dN

] (Gaussian)

where dN ∈ {0.5, 1.5, 4.5} is the bandwidth.
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kernreg y m, g ( yubar1 ) at (12) w1 ( 0 . 5 ) r ec

kernreg y m, g ( yubar2 ) at (12) w1 ( 1 . 5 ) r ec

kernreg y m, g ( yubar3 ) at (12) w1 ( 4 . 5 ) r ec

kernreg y m, g ( ygbar1 ) at (12) w1 ( 0 . 5 ) gau

kernreg y m, g ( ygbar2 ) at (12) w1 ( 1 . 5 ) gau

kernreg y m, g ( ygbar3 ) at (12) w1 ( 4 . 5 ) gau

l i s t yubar1 yubar2 yubar3 ygbar1 ygbar2 ygbar3 in 1/1

Listing 2: Uniform & Gaussian kernel estimates of E(y|m = 12) with different bandwidths.

Table 1: Uniform & Gaussian kernel estimates of E(Y |M = 12) with bandwidths: 0.5, 1.5 and 4.5

Bandwidth Uniform Kernel Gaussian Kernel
0.5 0.888172 0.8865797
1.5 0.8781362 0.8720608
4.5 0.8543689 0.8533347

3. The point here is to compare OLS and nonparametric estimators. Essentially, by expanding the band-
width, we use more data and so we get closer to the OLS estimate. This would receive full credit.
Extra discussion follows.
For dN < 1, since m ∈ N, only i such that mi = m = 12 will be given a value of one (instead of zero)
by the indicator function in the estimation.

The Gaussian Kernel will put more weight on values close tom = 12, soK
[
ρ(Mi,M=12)

dN

]
= K

[
ρ(M=12,M=12)

dN

]
for i such that mi = m = 12 (this will be the only i where the indicator function will be non-zero in the
estimation) but unlike the Uniform Kernel estimate, the indicator function K[·] will take a value that
will not be exactly one; thus the Gaussian Kernel estimate in the case dN = 0.5 will be different to the
Uniform Kernel estimate.Once the bandwidths are increased above 1, e.g. dN ∈ {1.5, 4.5}, the kernel
estimators allow values further from m = 12 to be taken into account (m ∈ {11, 12, 13} for dN = 1.5
and m ∈ N : 8 ≤ m ≤ 16 for dN = 4.5). In fact, irrespective of the shape of the distribution (Uniform
or Gaussian), the estimates seem to be decreasing with the size of the bandwidth. This is because these
kernel estimators give more weight to values further away from M = 12 as the bandwidth increases.
Increasing the bandwidth will allow for more observations to lie within the bandwidth and so the
variance will come down. However, increasing the bandwidth will lead to a bias of the estimate (the
values of M no longer lying within a bandwidth that can be made arbitrarily small and still contain the
values of M). The curse of dimensionality problem arises in trying to chose the bandwidth to minimise
the mean square error (variance and bias) as the sample size increases, especially as the dimensions
increase (our case only looks at M, so there is only one dimension, hence only dN , rather than dkN .

Exercise 3 (10 Marks). A survey firm conducting an election poll can contact voters by any of three modes:
internet, telephone or home interview. Let x denote the mode that the firm uses to contact a voter. Suppose
that the firm contacts 1200 voters; 400 by internet (x = 0), 400 by telephone (x = 1) and 400 by home
interview (x = 2). These voters are asked if they want Fianna Fáil to return to government in the year 2016.
The possible responses are no (y = 0), indifferent (y = 1

2 ) and yes (y = 1). Suppose that all voters have a
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Contact Mode

Response to Survey Question Internet (x = 0) Telephone (x = 1) Home Interview (z = 2)
y = 0 100 100 100
y = 1

2 100 100 100
y = 1 100 100 100

no response 100 100 100

Table 2: A 2016 return for Fianna Fáil.

value of y, but some of them choose not to respond to the survey. Here are the data obtained: When answer
the questions below, consider these 1200 voters to be the population of interest, not a sample drawn from
a larger population. You are asked to predict y conditional on the event (x = 1). Given the available data,
what can you deduce about:

1. the best predictor of y conditional on (x = 1), under square loss?

2. the best predictor of y conditional on (x = 1), under absolute loss?

Solution 3 (Conditional Prediction with Incomplete Data).
Let z = 1 denote response and z = 0 denote non-response in the following solutions.

1. The best predictor of y conditional on (x = 1), under square loss is the conditional mean, E(y|x = 1).
By the law of iterated expectations:

E(y|x = 1) = E(y|z = 1, x = 1)P (z = 1|x = 1) + E(y|z = 0, x = 1)P (z = 0|x = 1)

We know that P (z = 0|x = 1) = 1
4 and P (z = 1|x = 1) = 3

4 . The quantity E(y|z = 0, x = 1) is
unknown – we only know that E(y|z = 0, x = 1) ∈ [0, 1]. We must calculate E(y|z = 1, x = 1):

E(y|z = 1, x = 1) = 0 · 1

3
+

1

2
· 1

3
+

1

·
1

3

=
1

2

∴ E(y|x = 1) =
1

2

3

4
+ [0, 1]

1

4

∴ H[E(y|x = 1)] = [
3

8
,

5

8
]

2. The best predictor of y conditional on (z = 1), under absolute loss is the conditional median, E(y|z =
1) = inf{t : P (y ≤ t|z = 1) ≥ 1

2}. We know that P (z = 1|x = 1) = 3
4 and that P (y = i|x = 1) = 1

3 for
any i ∈ {0, 12 , 1}, i.e. all modes are equally likely. We do not know P (y|z = 0, x = 1). We can choose
one of two extremes, either all voters who were contacted by telephone (x = 1) who did not respond
(z = 0) would have not wanted Fianna Fáil to return to government in 2016 (y = 0) or – at the other
side – all such voters would want Fianna Fáil to return to government (y = 1). In the first case by the
law of total probability:

P (y ≤ 0|x = 1) =
1

3
· 3

4
+ 1 · 1

4
=

1

2

so M(y|x = 1) = 0. In the second case:

P (y ≤ 0|x = 1) =
1

3
· 3

4
=

1

4
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so M(y|x = 1) 6= 0. In this case we will check if M(y|x = 1) = 1
2 .

P (y =
1

2
|x = 1) =

1

3
· 3

4

=
1

4

=⇒ P (y ≤ 1

2
|x = 1) =

1

4
+

1

4

=
1

2

So, in the second case M(y|x = 1) = 1
2 . However, observe that M(y|x = 1) 6= 1 for any distribution.

We have assumed the extreme case that all voters who were contacted by telephone and did not
respond would have wanted Fianna Fáil to return to government (y = 1). Yet, we did not get that
M(y|x = 1) = 1. Therefore, we conclude that M(y|x = 1) ∈ {0, 12}.
This proof relies on placing all the weight for the unobserved outcomes on either end of the distribution
(y = 0 and y = 1). We found that even looking at these extreme cases, the median, middle voter cannot
be at the top end (y = 1) in this example.

Exercise 4 (20 Marks). Consider the problem of how sentencing juvenile offenders may affect their future
criminality. Suppose we have available data on the sentencing and recidivism of males in Ireland who were
born from 1980 through 1985 and who were convicted of offenses before they reached age 16. Let t = b denote
confinement in residential facilities and t = a denote sentences that do not involve residential confinement.
The outcome of interest is y defined by:

y =

{
1 offender is not convicted of a subsequent crime the in five-year period following sentencing

0 offender is convicted of a subsequent crime in the five-year period following sentencing

We have data for the study population as follows:

P (t = b) = 0.10

P (y = 0) = 0.65

P (y = 0|t = b) = 0.75

P (y = 0|t = a) = 0.6

Consider two alternative policies: one mandating residential treatment for all offenders and the other man-
dating nonresidential treatment. The recidivism probabilities under these policies are P [y(b) = 0] and
P [y(a) = 0], respectively.

1. If you assumed that judges in Ireland either purposefully or effectively sentence offenders at random
to residential and nonresidential treatments, what could you conclude regarding P [y(b) = 0] and
P [y(a) = 0]?

2. What would be the identification regions for these potential recidivism probabilities using the empirical
evidence alone?

3. What are the widths of the two intervals you calculated in 2? If they differ, why do they differ? If
they do not differ, why do they not differ?

4. The average treatment effect in this setting is the difference in recidivism probabilities under the two
alternative sentencing policies, i.e. P [y(b) = 0] − P [y(a) = 0]. Calculate the identification region for
average treatment effect using the data alone. What is the width of this interval? Does it contain
zero? Explain.
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5. Calculate the average treatment effect in 2 under the assumption of treatment at random, i.e. under
P [y(a)|t = a] = P [y(a)|t = b] and P [y(b)|t = a] = P [y(b)|t = b].

6. Finally, suppose that a legal researcher wants to use this data to support the abolition of sentences
confining juvenile offenders to residences. In particular, she states the following:

Data indicate that juvenile offenders who are not sentenced to residential confinement have
a lower probability of committing future crimes. The effect of nonresidential treatment is to
lower the probability of juvenile offenders committing future crimes from 0.77 to 0.59.

Does this statement accurately describe the empirical findings? Explain.

Solution 4 (Treatment Response).

1. Random treatment assignment (random) implies that for t′ ∈ {a, b}:

P (y(t′)|t = t′) = P (y(t′)|t 6= t′)

So, by the law of total probability:

P (y(t′))
LTP
= P (y(t′)|t = t′)P (t = t′) + P (y(t′)|t 6= t′)P (t 6= t′)

random
= P (y(t′)|t = t′)︸ ︷︷ ︸

P (y|t=t′)

[P (t = t′) + P (t 6= t′)︸ ︷︷ ︸
1

]

which holds for all t′ ∈ {a, b}. Therefore

P [y(b) = 0] = P (y = 0|t = b) = 0.75

P [y(a) = 0] = P (y = 0|t = a) = 0.6

2. Without using any assumptions, again using the law of total probability:

P (y(b) = 0)
LTP
= P (y(b) = 0|t = b)P (t = b)︸ ︷︷ ︸

P (y=0|t=b)

P (t = b) + P (y(b) = 0|t = a)︸ ︷︷ ︸
∈[0,1]

P (t = a)︸ ︷︷ ︸
1−P (t=b)

= 0.75 · 0.1 + [0, 1] · 0.9
∈ [0.075, 0.975]

P (y(a) = 0)
LTP
= P (y(a) = 0|t = a)︸ ︷︷ ︸

P (y=0|t=a)

P (t = a) + P (y(a) = 0|t = b)︸ ︷︷ ︸
∈[0,1]

P (t = b)

= 0.6 · 0.9 + [0, 1] · 0.1
∈ [0.54, 0.64]

3. The width of H[P (y(b) = 0)] is 0.9 and the width of H[P (y(a) = 0)] is 0.1. In the first case, this is
because this is the fraction of the study population who received treatment b and who, therefore, have
unobservable outcomes under treatment b. Symmetrically, the region for P (y(a) = 0) has width 0.1.

4. Let ATE = P [y(b) = 0]− P [y(a) = 0]. From part 2:

P [y(b) = 0]
2
= [

Lb︷ ︸︸ ︷
0.075,

Ub︷ ︸︸ ︷
0.975]

P [y(a) = 0]
2
= [

La

0.54︸︷︷︸, Ua

0.64︸︷︷︸]
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The lower and upper bounds for ATE are given by

Lb − Ua = −0.565

Ub − La = 0.435

∴ H[ATE] = [−0.565, 0.435]

H[ATE] necessarily has a width of one and includes zero. To explain this, note that using data alone,
the hypothesis of ATE = 0 is not refutable. Given that counterfactual outcomes are unobserved, it
is possible that y(a) = y(b) for every person in the population; technically, we say that yj(a) = yj(b)
for all persons j in the population. Therefore, the hypothesis of zero average treatment effects is not
refutable using empirical evidence alone. The hypothesis may be made refutable only if the evidence
is combined with sufficiently strong distributional assumptions.

5. We assumed random treatment assignment in part 1 and found that P [y(a) = 0] = 0.6 and P [y(b) =
0] = 0.75 so ATE = 0.15, indicating that nonresidential treatment is much better than residential
treatment if the objective is to minimise recidivism.

6. No, this statement does not accurately describe the empirical finding.
We can only say that juvenile offenders who were sentenced to residential confinement had on average
a higher probability of recidivism. We cannot say that the treatment of being sentenced to residential
confinement increased the probability of recidivism.
The researcher has confused correlation with causation and has used a counterfactual (expressing what
has not happened but what might or would happen if circumstances, i.e. data were different). The
researcher is in effect extrapolating using the assumption of external validity, which is undermined by
the fact that we are only looking at juvenile offenders in Ireland who were born during 1980-1985.
Furthermore, changing the very structure of the sentences may change how people respond; this is
related to the Lucas critique.
However, if the juvenile offenders were randomly sentenced to residential confinement as in part 5,
then the researcher would be correct in saying that the effect of nonresidential treatment is to lower
the probability of juvenile offenders committing future crimes.

LPM, Logit & Probit

Exercise 5 (20 Marks). For this exercise you will need the dataset GRE.dta and the problems MUST
be implemented in STATA where indicated. For this you will need to provide your STATA program and
regression output. This data set has a binary response (outcome, dependent) variable called admit. There
are three predictor variables: gre, gpa and rank. We will treat the variables gre and gpa as continuous. The
variable rank takes on the values 1 through 4. Institutions (Colleges that students attended) with a rank
of 1 have the highest prestige, while those with a rank of 4 have the lowest. Conduct a logit, probit and
ols regression and interpret the coefficients. Compare the results from the 3 regressions and explain which
model you prefer. Justify your answers.

Solution 5 (LPM, Logit & Probit).
OLS : regress admit gre gpa i.rank
For every one unit change in GRE, the log odds of admission (versus non-admission) increases by 0.0004.
For a one unit increase in GPA, the log odds of being admitted to graduate school increases by 0.155.
The indicator variables for rank have a slightly different interpretation. For example, having attended an
undergraduate institution with rank of 2, versus an institution with a rank of 1, decreases the log odds of
admission by 0.16.

Logit : logit admit gre gpa i.rank
For every one unit change in GRE, the log odds of admission (versus non-admission) increases by 0.002. For
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a one unit increase in GPA, the log odds of being admitted to graduate school increases by 0.804. The indica-
tor variables for rank have a slightly different interpretation. For example, having attended an undergraduate
institution with rank of 2, versus an institution with a rank of 1, decreases the log odds of admission by 0.675.

Probit : probit admit gre gpa i.rank
For a one unit increase in GRE, the z-score increases by 0.001. For each one unit increase in GPA, the
z-score increases by 0.478. The indicator variables for rank have a slightly different interpretation. For
example, having attended an undergraduate institution of rank of 2, versus an institution with a rank of 1
(the reference group), decreases the z-score by 0.415.
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1 . use "/Users/ccs/Desktop/Econ Under/GRE.dta"

2 . summarize gre gpa

    Variable        Obs        Mean    Std. Dev.       Min        Max

         gre        400       587.7    115.5165        220        800
         gpa        400      3.3899    .3805668       2.26          4

3 . tab rank 

       rank       Freq.     Percent        Cum.

          1          61       15.25       15.25
          2         151       37.75       53.00
          3         121       30.25       83.25
          4          67       16.75      100.00

      Total         400      100.00

4 . tab admit

      admit       Freq.     Percent        Cum.

          0         273       68.25       68.25
          1         127       31.75      100.00

      Total         400      100.00

5 . tab admit rank

                               rank
     admit          1          2          3          4      Total

         0         28         97         93         55        273 
         1         33         54         28         12        127 

     Total         61        151        121         67        400 

6 . 
7 . 
8 . regress admit gre gpa i.rank  

      Source        SS       df       MS              Number of obs =     400
           F(  5,   394) =    8.79

       Model   8.70247579     5  1.74049516           Prob > F      =  0.0000
    Residual   77.9750242   394  .197906153           R-squared     =  0.1004

           Adj R-squared =  0.0890
       Total      86.6775   399  .217236842           Root MSE      =  .44487

       admit       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

         gre    .0004296   .0002107     2.04   0.042     .0000153    .0008439
         gpa     .155535   .0639618     2.43   0.015     .0297859    .2812842
             
        rank 
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          2    -.1623653   .0677145    -2.40   0.017    -.2954922   -.0292385
          3    -.2905705   .0702453    -4.14   0.000     -.428673   -.1524679
          4    -.3230264   .0793164    -4.07   0.000    -.4789626   -.1670902
             
       _cons   -.2589103   .2159904    -1.20   0.231    -.6835481    .1657275

9 . logit admit gre gpa i.rank  

Iteration 0:   log likelihood = -249.98826  
Iteration 1:   log likelihood = -229.66446  
Iteration 2:   log likelihood = -229.25955  
Iteration 3:   log likelihood = -229.25875  
Iteration 4:   log likelihood = -229.25875  

Logistic regression                               Number of obs   =        400
                                                  LR chi2(5)      =      41.46
                                                  Prob > chi2     =     0.0000
Log likelihood = -229.25875                       Pseudo R2       =     0.0829

       admit       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

         gre    .0022644    .001094     2.07   0.038     .0001202    .0044086
         gpa    .8040377   .3318193     2.42   0.015     .1536838    1.454392
             
        rank 
          2    -.6754429   .3164897    -2.13   0.033    -1.295751   -.0551346
          3    -1.340204   .3453064    -3.88   0.000    -2.016992   -.6634158
          4    -1.551464   .4178316    -3.71   0.000    -2.370399   -.7325287
             
       _cons   -3.989979   1.139951    -3.50   0.000    -6.224242   -1.755717

10 . probit admit gre gpa i.rank   

Iteration 0:   log likelihood = -249.98826  
Iteration 1:   log likelihood = -229.29667  
Iteration 2:   log likelihood = -229.20659  
Iteration 3:   log likelihood = -229.20658  

Probit regression                                 Number of obs   =        400
                                                  LR chi2(5)      =      41.56
                                                  Prob > chi2     =     0.0000
Log likelihood = -229.20658                       Pseudo R2       =     0.0831

       admit       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

         gre    .0013756   .0006489     2.12   0.034     .0001038    .0026473
         gpa    .4777302   .1954625     2.44   0.015     .0946308    .8608297
             
        rank 
          2    -.4153992   .1953769    -2.13   0.033    -.7983308   -.0324675
          3     -.812138   .2085956    -3.89   0.000    -1.220978   -.4032981
          4     -.935899   .2456339    -3.81   0.000    -1.417333   -.4544654
             
       _cons   -2.386838   .6740879    -3.54   0.000    -3.708026   -1.065649
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Tobit and Censoring

Exercise 6 (10 Marks). For this exercise you will need the dataset Honors2.dta and the problems MUST
be implemented in STATA where indicated. For this you will need to provide your STATA program and
regression output. The academic aptitude variable is apt which we will use as the dependent variable.
Reading and math test scores are read and math respectively. The variable prog is the type of program the
student is in, it is a categorical (nominal) variable that takes on three values, academic (prog = 1), general
(prog = 2), and vocational (prog = 3). Using a histogram show the censoring of the variable apt. Conduct
a tobit and ols regression and interpret the coefficients. Compare the results from the 2 regressions and
explain which model you prefer. Justify your answers.

Solution 6 (Tobit & Censoring).
OLS : regress apt read math i.prog
For a one unit increase in read, there is a 2.55 point increase in the predicted value of apt. A one unit
increase in math is associated with a 5.38 unit increase in the predicted value of apt. The terms for prog
have a slightly different interpretation. The predicted value of apt is 48.8 points lower for students in a
vocational program (prog=3) than for students in an academic program (prog=1).

Tobit : tobit apt read math i.prog, ul(800)
For a one unit increase in read, there is a 2.7 point increase in the predicted value of apt. A one unit increase
in math is associated with a 5.91 unit increase in the predicted value of apt. The terms for prog have a
slightly different interpretation. The predicted value of apt is 46.14 points lower for students in a vocational
program (prog=3) than for students in an academic program (prog=1).
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1 . regress apt read math i.prog

      Source        SS       df       MS              Number of obs =     200
           F(  4,   195) =   77.13

       Model   1200325.87     4  300081.468           Prob > F      =  0.0000
    Residual   758712.883   195   3890.8353           R-squared     =  0.6127

           Adj R-squared =  0.6048
       Total   1959038.76   199  9844.41585           Root MSE      =  62.377

         apt       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        read    2.552671   .5829987     4.38   0.000     1.402879    3.702463
        math    5.383153   .6589949     8.17   0.000     4.083481    6.682825
             
        prog 
          2    -13.74056    11.7439    -1.17   0.243    -36.90193    9.420818
          3    -48.83475    12.9815    -3.76   0.000    -74.43692   -23.23258
             
       _cons    242.7354   30.13952     8.05   0.000     183.2941    302.1767

2 . 
3 . tobit apt read math i.prog, ul(800)

Tobit regression                                  Number of obs   =        200
                                                  LR chi2(4)      =     188.97
                                                  Prob > chi2     =     0.0000
Log likelihood = -1041.0629                       Pseudo R2       =     0.0832

         apt       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        read    2.697939    .618798     4.36   0.000     1.477582    3.918296
        math    5.914485   .7098063     8.33   0.000     4.514647    7.314323
             
        prog 
          2    -12.71476   12.40629    -1.02   0.307    -37.18173     11.7522
          3     -46.1439   13.72401    -3.36   0.001     -73.2096   -19.07821
             
       _cons     209.566   32.77154     6.39   0.000     144.9359    274.1961

      /sigma    65.67672   3.481272                      58.81116    72.54228

  Obs. summary:          0  left-censored observations
                       183     uncensored observations
                        17 right-censored observations at apt>=800
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Count data

Exercise 7 (10 Marks). For this exercise you will need the dataset Honors3.dta and the problems MUST
be implemented in STATA where indicated. For this you will need to provide your STATA program and
regression output. num awards is the dependent variable and indicates the number of awards earned by
students at a high school in a year, math is a continuous independent variable and represents students’
scores on their math final exam, and prog is a categorical independent variable with three levels indicating
the type of program in which the students were enrolled. Conduct a poisson and ols regression and interpret
the coefficients. Compare the results from the 2 regressions and explain which model you prefer. Justify
your answers.

Solution 7 (Poisson).
OLS : regress num awards i.prog math, vce(robust)
The coefficient for math is .047. This means that the expected increase in log count for a one-unit increase in
math is .047. The indicator variable 2.prog is the expected difference in log count between group 2 (prog=2)
and the reference group (prog=1). Compared to level 1 of prog, the expected log count for level 2 of prog
increases by about 1.1. The indicator variable 3.prog is the expected difference in log count between group
3 (prog=3) and the reference group (prog=1). Compared to level 1 of prog, the expected log count for level
3 of prog increases by about .21.

Poisson: poisson num awards i.prog math, vce(robust)
The coefficient for math is .07. This means that the expected increase in log count for a one-unit increase in
math is .07. The indicator variable 2.prog is the expected difference in log count between group 2 (prog=2)
and the reference group (prog=1). Compared to level 1 of prog, the expected log count for level 2 of prog
increases by about 1.1. The indicator variable 3.prog is the expected difference in log count between group
3 (prog=3) and the reference group (prog=1). Compared to level 1 of prog, the expected log count for level
3 of prog increases by about .37.

SOLUTION 13 of 14



Sunday, February 3, 2013 8:30 PM   Page 1

User: Clemens Struck   

1 . poisson num_awards i.prog math, vce(robust)

Iteration 0:   log pseudolikelihood = -182.75759  
Iteration 1:   log pseudolikelihood = -182.75225  
Iteration 2:   log pseudolikelihood = -182.75225  

Poisson regression                                Number of obs   =        200
                                                  Wald chi2(3)    =      80.15
                                                  Prob > chi2     =     0.0000
Log pseudolikelihood = -182.75225                 Pseudo R2       =     0.2118

                            Robust
  num_awards       Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

        prog 
          2     1.083859   .3218538     3.37   0.001     .4530373    1.714681
          3     .3698092   .4014221     0.92   0.357    -.4169637    1.156582
             
        math    .0701524   .0104614     6.71   0.000     .0496485    .0906563
       _cons   -5.247124   .6476195    -8.10   0.000    -6.516435   -3.977814

2 . 
3 . regress num_awards i.prog math

      Source        SS       df       MS              Number of obs =     200
           F(  3,   196) =   25.07

       Model   61.1767822     3  20.3922607           Prob > F      =  0.0000
    Residual   159.443218   196  .813485805           R-squared     =  0.2773

           Adj R-squared =  0.2662
       Total       220.62   199  1.10864322           Root MSE      =  .90193

  num_awards       Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

        prog 
          2     .4786129   .1689563     2.83   0.005     .1454072    .8118187
          3     .2125061   .1874332     1.13   0.258    -.1571386    .5821508
             
        math    .0478888   .0077731     6.16   0.000     .0325592    .0632184
       _cons   -2.195504   .4114165    -5.34   0.000    -3.006876   -1.384133


