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Attempt TWO question from the four questions in this section.

Question 1 (100 Marks) – Identification & Simultaneous Equations
Models.

Part (a): (50 Marks)

Given that we are taking marks in ‘fives’, let us write the revised distribution
in table 1. There are N = 120 students in the class, of whom we have no

Score Frequency

5 3
15 17
25 2
35 10
45 18
55 10
65 15
75 21
85 15
95 3

Table 1: Revised distribution of marks.

data on six, so P (z = 0) = 6
120

= 0.05 is the fraction of missing data;
remember PN(z = 1) = 1

N

∑N
i=1 1[zi = 1].

i. To pass, students must get at least 40. Letting B denote the set of
all such marks from the revised distribution that corresponding to the
students passing, to pass y must be in B:

y ∈ {45, 55, 65, 75, 85, 95} ≡ B

We want P (y ∈ B) and can express this using the law of total proba-
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bility (LTP) as

P (y ∈ B)
LTP
= P (y ∈ B|z = 1)P (z = 1) + P (y ∈ B|z = 0)P (z = 0) (1)

We know

P (z = 0) = 0.05 =⇒ P (z = 1) = 1− P (z = 0) = 1− 0.05 = 0.95

and while P (y ∈ B|z = 0) is the only unknown quantity in (1), because
it is a probability, P (y ∈ B|z = 0) ∈ [0, 1]. We need to calculate
P (y ∈ B|z = 1).

PN(y ∈ B|z = 1) =

∑N
i=1 1[yi ∈ B, zi = 1]∑N

i=1 1[zi = 1]

=
18 + 10 + 15 + 21 + 15 + 3

120− 6

=
82

114

∴ P (y ∈ B) =
92

114
× 0.95 + [0, 1]× 0.05

∈
[

41

60
,
11

15

]
≡ H[P (y ∈ B)]

which is our identification region for the probability that a student
passes.

ii. We want E(y), so using the law of iterated expectations to expand
E(y), we get that

E(y)
LIE
= E(y|z = 1)P (z = 1) + E(y|z = 0)P (z = 0)

We know
P (z = 1) = 0.95 P (z = 0) = 0.05
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and while E(y|z = 0) is unknown, marks must lie within [0, 100]. Actu-
ally with the assumption of ‘fives’, we know more:

5 ≤ E(y|z = 0) ≤ 95

Going even further, we can write this out fully:

E(y|z = 0) ∈ {5, 15, 25, 35, 45, 55, 65, 75, 85, 95}

We need to calculate E(y|z = 1) and can work this out from the re-
vised distribution in table 1. Summing over observed i where I de-
notes the number of observations:

E(y|z = 1) =
1

I

∑
i

scorei × frequencyi

=
(5)(3) + (15)(17) + (25)(2) + (35)(10) + (45)(18)

114

+
(55)(10) + (65)(15) + (75)(21) + (85)(15) + (95)(3)

114

=
6140

114

∴ E(y) =
6140

114
(0.95) + [5, 95](0.05)

∈
[

617

12
,
671

12

]
[51.416̇, 55.916̇]

≡ H[E(y)]

which is the identification region for the average mark in the class.

iii. No, this statement does not accurately describe the empirical finding.
We can only say that students who are members of water-polo clubs
on average scored higher than those who are not. We cannot say
that the very fact of such membership increased the probability of a
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student scoring highly.
Asking what would happen to this E(Y |X) when we vary X is akin
to a hypothetical change in X, where we have no data and so the
researcher has confused correlation with causation and has used
a counterfactual (expressing what has not happened but what might
or would happen if circumstances, i.e. data, were different). The
researcher is in effect extrapolating using the assumption of external
validity, which is undermined by the fact that we are only looking at
students in a particular class and we have no data on the rest of the
population of students at large.
However, if the students were randomly assigned with membership
or non-membership of water-polo clubs, then the researcher would be
correct in saying that membership of water-polo clubs increases the
probability that a student will do better on average than a student who
is not a member of a water-polo club. But since we are dealing with
what actually happened (descriptive) we cannot say that having such
membership increases the probability that a student scores highly.

Part (b): (50 Marks)

i. Endogenous variables (determined within model) M = 4: C, I, T , Y .
Predetermined variables (exogenous [determined outside the model]
and lagged endogenous) K = 3: exogenous: 1, G and lagged en-
dogenous: Yt−1. The tax equation is a behavioural equation – it at-
tempts to explain the behaviour of economic agents.
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ii. The structural parameters (arranged) are

C I T Y 1 G Yt−1

1 0 a2 − a1 − a0 0 0

0 1 0 0 − b0 0 − b1
0 0 1 − c1 − c0 0 0

− 1− 1 0 1 0 − 1 0

Focusing on the tax function, the order condition is checked by:

K − k = 2

m− 1 = 1

∴ K − k > m− 1

Alternatively

M +K − (m+ k) = 4

M − 1 = 3

∴ M +K − (m+ k) > M − 1

In both cases, the order condition is satistfied as a strict inequality,
so the tax function may be over identified. We say may be since
the order condition is not the sufficient condition – we will know with
certainty once we have checked the rank condition, which is both nec-
essary and sufficient as a check for identifiability of an equation in a
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simultaneous equation model. Checking the rank condition:

ΛT =

 1 0 0 0

0 1 0 −b1
−1 −1 −1 0


ρ(ΛT ) = 3 = M − 1 = 3

Therefore, the tax function is over identified, given the order condition
result.

Extra on how we got ρ(ΛT ) = 3 = M − 1 = 3: rank cannot exceed
3, but could be 2 (look only at rows). The rank must be 3 if we can
sensibly estimate the tax function. We can go about this in either of
the following two ways; each way implies that the columns and rows
are linearly indepenent so the rank is 3.

(a) Show that the determinant is non-zero:

det(ΛT ) = −1− b1 6= 0

(b) Consider α1, α2 and α3 such that at least one is non-zero:

α1(1 0 0 0) + α2(0 1 0 − b1) + α3(−1 − 1 − 1 0) = 0

which is equal to zero if and only if

α1 − α3 = 0 (2)

α2 − α3 = 0 (3)

−α3 = 0 (4)

−b1α2 = 0 (5)



XEC30901

Equations (2)–(4) imply that

α1 = α2 = α3 = 0

but this violates our assumption that at least one α1, α2 and α3

is non-zero. This proves that any linear combination of the rows
can only sum to zero if all coefficients α1, α2 and α3 are identically
zero – this is the definition of linear independence of rows of a
matrix.

As the tax equation is overidentified, a single equation method such
as 2SLS would be an appropriate estimation technique; system meth-
ods include 3SLS and FIML. As for other single equation methods,
OLS leads to simultaneity bias and ILS only works for just-identified
case, so both would be inappropriate in this case.

(a) Estimate reduced form equations for endogenous variables on
right-hand side of structural form equations of interest via OLS
and obtain reduced form estimates of these endogenous vari-
ables.

(b) Substitute for right-hand side endogenous variables in structural
equation using reduced form estimates from stage 1 as proxies
(instruments) and estimate structural form equation by OLS. This
produces 2SLS estimates of structural form parameters.

Question 2 (100 Marks) – Limited Dependent Variables & Instrument
Variables.

Part (a): (50 Marks)

i. Yes, we have avoided the dummy variable trap since there are two
categories in our dummy variable (male and female) and we are using
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1 dummy variable (female) and an intercept. In general, we avoid
the dummy variable trap when there are g groups or categories by
including at most g−1 dummy variables plus an intercept, or g dummy
variables and no intercept. The coefficient δ̂0 = −0.02 in this case
means that the differential effect of being a female is associated with
a 100× δ̂0 = −2% change in wages, i.e. women earn on average two
percent less than men in hourly wages for a given level of education.
To compute the exact percentage difference in predicted wages for a
woman relative to a man, we calculate 100[exp δ̂0 − 1] ≈ −1.98 to two
decimal places; a woman earns on average 1.98% less than a man
with the same level of education. The graph for β0 > 0, δ0 < 0, β1 > 0,
δ1 > 0 and β0 + δ0 > 0 is given in figure 1.1

ii. Limitations: (any two)

(a) Predicts probabilities that could be less than 0 or greater than 1.
Use graph to explain.

(b) Constant partial effects. Need to explain.

(c) Heteroscedasticity unless probability does not depend on any of
the independent variables. No bias but t and F statistics rely
on homogeneity even when sample size is large. Corrections:
heteroscedasticity-robust standard errors, t, F and Lagrange-
Multiplier (LM) statistics and tests for heteroscedasticity plus WLS,

1Correction: wage label on vertical axis should be ‘log(wage)’.
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Figure 1: Differential intercept and slope for return to education between
men and women.
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GLS and FGLS. To see heteroscedasticity:

V (u) = E[u− E(u)]2 = E(u2)

=
2∑
j=1

ujP (uj)

= (1− α− βX)2(α + βX) + (−α− βX)2(1− α− βX)

= (1− α− βX)2(α + βX) + (α + βX)2(1− α− β)

= (1− α− βX)(α + βX)

= Pi(1− Pi)

To see how to use WLS: run OLS on Yi = α + βXi + ui to get

Ŷi = P̂i and set weights to be wi =
[
P̂i(1− P̂i)

] 1
2

and transform
data as

Y ∗
i =

Yi
wi

X∗
i =

Xi

wi
u∗i =

ui
wi

Do not create a constant: do not need intercept – otherwise you
are producing a new variable in place of the intercept. So

V (u∗i ) = V

(
ui
wi

)
=

1

w2
i

V (ui) =
w2
i

w2
i

= 1

Run OLS on
Y ∗
i = α

1

wi
+ βX∗

i + u∗i

to get α̂ and β̂, which will be unbiased and asymptotically effi-
cient. It turns out that in many applications, OLS statistics are
not too far off and it is acceptable in applied work to present a
standard OLS analysis of a LPM.

(d) Binomial errors:

Yi = 1 =⇒ ui = 1− α− βXi
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and
Yi = 0 =⇒ ui = −α− βXi

Thus, ui is binomial with parameter Pi and therefore errors are
non-Normal, so Classical Linear Normal Regression model as-
sumption is violated, which complicates confidence intervals, F
tests, t tests, etc.

Maximum likelihood estimation due to nonlinear nature of E(y|x),
which renders OLS and WLS inapplicable. Sample elaboration: Could
use NLLS/NWLWLS. With MLE, heteroscedasticity is acounted for:

f(y|xi;β) = [G(xiβ)]y[1−G(xiβ)]1−y y = 0, 1 (6)

where the intercept is in the vector x. When y = 1, we have G(xiβ)

and when y = 0, we have 1 − G(xiβ). The log-likelihood function for
observation i is a function of the parameters and the data (xi, yi) and
is simply the log of (6):

`i(β) = yi log[G(xiβ)] + (1− yi) log[1−G(xiβ)]

Since G() is strictly between 0 and 1 for logit and probit, `i(β) is well-
defined for all values of β

L(β) =
n∑
i=1

`i(β) (7)

MLE of β: β̂ maximises (7). If G() is the standard logit/normal cdf,
then β̂ is the logit/probit estimator.
An alternative attempt at this question might be the following. Sup-
pose we have data Y = 1, 1, 0, X = X1, X2, X3 and P = P1, P2, P3. If
OLS/WLS are inappropriate, we can use MLE, which maximises the
probability of the observed sample of data. The problem is to choose
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α, β to maximise L(α, β|data) where the likelihood equation for the
logit say is

L = ΠiPiΠj(1− Pj)

= Πi
eα+βXi

1 + eα+βXi
Πj

eα+βXj

1 + eα+βXj

We can differentiate this with respect to z and put this first order con-
ditions equal to zero and solve for z. This would be done numerically,
not analytically. Maximum likelihood calculations are difficult, but done
routinely in econometrics packages.

iii. An alternative to R2 is the count R2, which is also known as the pro-
portion of accurate predictions. If the model predicts that P (yi = 1) =

Pi >
1
2

and yi = 1, then we have a ‘correct’ prediction and if the model
predicts that P (yi = 1) = Pi <

1
2

and yi = 0, then we have a ‘correct’
prediction. So, the proportion of correct predictions is given by

number correct predictions
number total observations

=
491

690
= 71.2% = Count R2

Part (b): (50 Marks)

i. A regressor is endogenous if it is correlated with the error term in
the structural equation: Corr(educ, u) 6= 0, violating the Classical as-
sumption that regressors are exogenous (Corr(x, u) = 0).
Sample discussion: It could be that there is simultaneity between
wages and education in that a higher return to education may in-
spire people to invest in human capital. If parents earn high incomes,
they might emphasise the importance of education to their children
by investing their money in their child’s education. As individuals start
earning higher wages, they may decide to invest more in their edu-
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cation or increase their skills through further education. In this case,
a higher wage enables individuals to return to school or college to
take extra courses. This is quite common in the medical profession
in terms of specialists. As they become more specialised, in cer-
tain fields like pediatrics, doctors must constantly educate themselves
about the latest developments and often do so through part-time spe-
cial masters courses. Perhaps individuals with high ability tend to also
have more years of education. Ability might positively affect wage, cet.
par.. Endogeneity can result from omitted variables, measurement er-
rors and simultaneity, among other things.
It might be that we have an omitted variable (subsumed in the error
term) that education is correlated with (e.g. ability). If we leave abil-
ity out of our model, our estimates will be subject to omitted-variable
bias and also be inconsistent (sampling distribution does not collapse
to the true value of the parameter we want to estimate).
Definition: An instrumental variable (IV) z is such that

(a) Corr(z, x) 6= 0 – z is valid instrument for x.

(b) Corr(z, u) = 0 – z is a predetermined variable.

So, an IV z for educ must be (i) correlated with education and (ii) un-
correlated with u (ability and any other unobserved factors affecting
wage).
Typically, when parents have a lot of education, there children have a
lot education and vice-versa; hence z3 and z4 are valid instruments as
assumption ia holds. We can test Cov(z, x) 6= 0 by estimating

x = π0 + π1z + v

and since π1 = Cov(z, x)/V ar(x), Cov(z, x) 6= 0 if and only if π1 6= 0,
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thus we should be able to reject the null hypothesis

H0 : π1 = 0

against two-sided alternative H0 : π1 6= 0 at a sufficiently small signif-
icance level (say 5% or 1%). If this is the case, then we can be fairly
confident that Cov(z, x) 6= 0.
Whether parents’ education is correlated with any unobserved factors
affecting wage is generally untestable as we do not observe these
factors; we usually appeal to economic behaviour or introspection or
simply assume there is no such correlation. The number of siblings
an individual has might be a better alternative. Sample discussion:
Typically, it is observed that education and the number of siblings are
inversely related – individuals from large families tend to have less ed-
ucation relative to individuals from smaller families. So, number of sib-
lings would seem to satisfy the first assumption, i.e. (Cov(z, x) 6= 0).
As to why Cov(z, u) = 0, the number of siblings has probably nothing
to do with the ability of an individual and possibly other unobserved
factors that affect wage. However, perhaps mother’s / father’s educa-
tion is correlated with ability to the extent that if a mother has a lot of
education, it may be that she has/had a high level of ability and this
was passed on to her child. If so, mother’s education would be corre-
lated with ability of the individual, which is unobserved and part of the
error term; hence, we could have Cov(z, u) 6= 0 and so assumption ib
would not hold.

ii. 2SLS is less efficient than OLS if explanatory variables are exogenous
– large standard errors – so we might want to test for endogeneity.
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Hausman (1978) test for endogeneity of y2 = educ:

log(wage) = β0 + β1educ+ β2exper + β3tenure+ u1 (8)

y2 = π0 + π1z1 + π2z2 + π3z3 + π4z4 + v2 (9)

where z1 = exper, z2 = tenure, z3 = motheduc, z4 = fatheduc

and equation (9) is the reduced form equation for y2 (reduced form
since all regressors on right-hand side are exogenous/predetermined
(in this case all are exogenous – no lagged endogenous variables)).
Equation (8) is the structural equation. We want to test for possible
endogeneity of y2 = educ. If all z’s are exogenous, then they are all
uncorrelated with u1, the disturbance term from the structural equa-
tion, i.e. Corr(zj, u1) = 0 for j = 1, 2, 3, 4. This implies that the only
way y2 is endogenous, i.e. Corr(y2, u1) 6= 0 is if Corr(v2, u1) = 0. We
want to test whether in fact Corr(v2, u1) = 0. Let u1 = δ1v2 + e1 where
Corr(e1, v2) = 0 and E(e1) = 0; so, we have expressed the structural
disturbance term u1 as a linear function of v2; if u1 is a linear function
of v2, then clearly v2 and u1 are related, i.e. Corr(v2, u1) 6= 0. We want
to test this, i.e. we want to test whether δ1 = 0 since if δ1 = 0, then
u1 = e1, i.e. u1 is not a function of / related to v2. We could test this by
putting v2 as an extra regressor in (9) and doing a t-test; however, we
do not observe v2. Hausman proposed a neat solution. We estimate
the reduced form (9) by OLS to get

ŷ2 = π̂0 + π̂1 + π̂2z2 + π̂3z3 + π̂4z4

and then simply recognize that y2 − ŷ2 = v̂2; and so we get v̂2. Next
we use v̂2 as an additional regressor in (9). To do this, recall that we
let u1 = δ1v2 + e1, so simply replace v2 by v̂2 and substitute this for u1



XEC30901

in (8) to get

y1 = β0 + β1y2 + β2z1 + β3z2 + δ1v̂2 + error (10)

Run OLS on (10) and do a t-test of H0 : δ1 = 0. Rejection implies
endogeneity since Corr(v2, u1) 6= 0. The reduced equation for educ is

educ = π0 +π1exper+π2tenure+π3motheduc+π4fatheduc+ v2 (11)

and identification requires that at least one of π3 and π4 is non-zero,
i.e. π3 6= 0 or π4 6= 0 or both. Testing H0 : π3 = 0, π4 = 0 in (11) using
an F-test, we get F = 55.40 and p-value = .0000. As expected, educ is
(partially) correlated with parents’ education.

iii. The estimated return to education is about 6.1%.
No, R2 = .136 is not a cause for concern. 2SLS R2 can be nega-
tive since R2 = 1 − SSR/SST is negative if SSR > SST so not very
useful to reportR2 for 2SLS estimation. When regressors are endoge-
nous Corr(x, u) 6= 0 say, we cannot decompose the variance of y into
β2
1V ar(x) + V ar(u) so R2 has no natural interpretation. Goodness of

fit is not a factor – goal of IV / 2SLS is to provide better estimates of
cet. par. effect of x on y when x and u are correlated. If goal is to
produce the largest R2, always use OLS but high R2 from OLS is of
little comfort if we cannot consistently estimate β1.


