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Motivation Multiple Regression Summary & References

Overview: endogenous explanatory variables
Week 4: chapter 15

• Background: omitted variable bias – derivation of omitted
variable bias (chapter 3); OLS is inconsistent under omitted
variables (chapter 5); omitted variable bias can be eliminated
(or at least mitigated) when a suitable proxy variable is given
for an unobserved explanatory variable (chapter 9);
unfortunately, suitable proxy variables are not always available.

• Different approach to endogeneity here: instrumental
variables (IV) – solve endogeneity in one or more explanatory
variables and 2SLS, which is second in popularity only to OLS
for estimating linear equations in applied econometrics.

1. IV yields consistent estimators under omitted variables.
2. IV used to solve errors-in-variables problem.

• Not covering: IV applied to time series and panel data just
like OLS.

• Next week, chapter 16: use IV to estimate simultaneous
equation models.

Copyright c© 2013 Michael Curran 3/28



Motivation Multiple Regression Summary & References

Motivation: Omitted Variables

Omitted variable bias (unobserved heterogeneity): excluding a
relevant variable ≡ underspecifying the model.

1. Ignore problem and suffer consequences of biased and
inconsistent estimators.

2. Find suitable proxy for unobserved variable.

3. Assume omitted variable time invariant and use panel data
(fixed effects) / time series (first-differencing methods).

IV: leaves unobserved variable in error term but recognizes
presence of omitted variable. Example:

log (wage) = β0 + β1educ + β2abil + e

Proxy variable such as IQ can be substituted for ability and then
(under assumptions) a consistent estimator of β1 is available from
the regression of log (wage) on educ , IQ.
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Motivation: Omitted Variables

• What if no proxy variable is available or does not have
properties needed to produce a consistent estimator of β1?

• Put abil into error term and left with simple regression model:

log (wage) = β0 + β1educ + u (1)

where u contains abil .

• OLS yields biased and inconsistent estimator of β1 if educ and
abil are correlated.

• With an IV for educ , can still use equation (1) as basis for
estimation.

y = β0 + β1x + u (2)

Cov(x , u) 6= 0.

• IV works whether or not x and u are correlated, but OLS
should be used if x is uncorrelated with u.
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Motivation: Omitted Variables

To obtain consistent estimates of β0 and β1 when x and u are
correlated, we need some extra info, via an observable variable z
such that

1. z is uncorrelated with u, i.e. Cov(z , u) = 0. ‘z is exogenous
in equation (2)’ so z should have no partial effect on y (once
x and the omitted variables in u are controlled for), and z
should not be correlated with unobserved factors that affect
y . Generally untestable.

2. z is correlated with x , i.e. Cov(z , x) 6= 0. z must be related
(positively or negatively) to the endogenous explanatory
variable x . Testable given a random sample from the
population.

Then, call z an instrumental variable for x .
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Motivation: Omitted Variables

• Testing Cov(z , x) 6= 0:

x = π0 + π1z + v

• Since π1 = Cov(z , x)/Var(z), Cov(z , x) 6= 0 ⇐⇒ π1 6= 0,
thus we should be able to reject null hypothesis:

H0 : π1 = 0 (3)

against two-sided alternative H0 : π1 6= 0 at a sufficiently
small significance level (say 5% or 1%).

• If this is the case, then we can be fairly confident that
Cov(z , x) 6= 0.
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Motivation: Omitted Variables
Example

• For log (wage) equation in (1), IV z for educ must be (i)
uncorrelated with ability (and any other unobservable factors
affecting wage) and (ii) correlated with education.

• Example: last digit of an individual’s social security number
satisfies first requirement: it is uncorrelated with ability
because it is determined randomly; however, this is not
correlated with education so it makes a poor IV for educ.

• What we have called a proxy variable for the omitted variable
makes a poor IV for the opposite reason.

• E.g. in log (wage) example with omitted ability, proxy variable
for abil must be as highly correlated as possible as abil .

• IV variable must be uncorrelated with abil , so while IQ is a
good candidate as a proxy variable for abil , it is not a good IV
for educ .
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Motivation: Omitted Variables
Example

• Less clear whether other possible IV candidates satisfy
exogeneity requirement Cov(z , u) = 0.

• In wage equations, used family background variables as IVs for
education, e.g. mother’s education positively correlated with
child’s education as can be seen by collecting a sample of data
on working people and running a simple regression of educ on
motheduc . Thus, motheduc satisfies Cov(z , x) 6= 0.

• Problem: mother’s education might be correlated with child’s
ability (through mother’s ability and perhaps quality of
nurturing at an early age) so Cov(z , u) = 0 fails.

• Another IV choice for educ in (1) is number of siblings while
growing up (sibs).

• Typically: more siblings associated with lower average levels of
education, so if number of siblings is uncorrelated with ability,
it can act as an IV for educ .
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Motivation: Omitted Variables
Another Example

Estimating the causal effect of skipping classes on final exam score:

score = β0 + β1skipped + u (4)

skipped could be correlated with other factors in u so a simple regression

of score on skipped may not give a good estimate of the causal effect of

missing classes. What might be a good IV for skipped? Need something

that has no direct effect on score and is not correlated with student

ability and motivation. Also, IV must be corr with skipped . e.g. distance

between living quarters and campus. So, skipped may be positively

correlated with distance – check by regressing skipped on distance and

doing a t test, as before. Is distance uncorrelated with u? In model (4),

some factors in u may be correlated with distance, e.g. students from

low-income families may live off campus; if income affects student

performance, this could cause distance to be correlated with u. An IV

approach might not be necessary if a good proxy exists for student ability,

e.g. cumulative GPA prior to the semester.
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Motivation: Omitted Variables
Availability of IV can be used to consistently estimate the parameters in
equation (2). Specifically, Cov(z , u) = 0 & Cov(z , x) 6= 0 (equivalently,
Cov(z , u) = 0 and (3)) serve to identify the parameter β1.
Identification of a parameter in this context means that we can write β1

in terms of population moments that can be estimated using a sample of
data.
To write β1 in terms of population covariances:

Cov(z , y) = β1Cov(z , x) + Cov(z , u)

Under Cov(z , u) = 0 & Cov(z , x) 6= 0:

β1 =
Cov(z , y)

Cov(z , x)
(5)

Note: algebra fails if z and x are uncorrelated, i.e. if Cov(z , x) = 0.

(5) shows that β1 is the population covariance between z and y divided

by the pop cov between z and x , which shows that β1 is identified.
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Motivation: Omitted Variables
Given a random sample, we estimate the population quantities by the
sample analogs (Analogy Principle).
Instrumental variables (IV) estimator of β1:

β̂1 =
∑n
i=1 (zi − z̄)(yi − ȳ)

∑n
i=1 (zi − z̄)(xi − x̄)

(6)

Given sample of data on x , y and z , simple to obtain IV estimate in (6).

IV est of β0 is simply β̂0 = ȳ − β̂1x̄ , which looks just like the OLS

intercept estimator except that the slope estimator β̂1 is now the IV

estimator. When z = x we obtain OLS est of β1, i.e. when x is

exogenous, it can be used as its own IV, and the IV estimator is then

identical to the OLS estimator. LLN shows that IV estimator is

consistent for β1 : plim(β̂1) = β1 provided assumptions Cov(z , u) = 0

and Cov(z , x) 6= 0 are satisfied. If either assumption fails, the IV

estimators are not consistent. When Corr(x , u) 6= 0, so IV estimation is

actually needed, it’s never unbiased so in small samples IV estimators can

have a substantial bias – one reason why large samples are preferred.
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IV: Statistical Inference
IV estimators have approximately Normal distributions in large
samples. For inference, need standard errors to compute t
statistics and confidence intervals. As for homogeneity assumption,
now state conditional on IV z , not on endogenous variable x :

E (u2|z) = σ2 = Var(u) (7)

AVar(β̂1) =
σ2

nσ2
x ρ2x ,z

(8)

As with OLS estimator, asymptotic variance of IV estimator
decreases to 0 at rate of 1

n where n is the sample size.

1. (8) provides a way to obtain standard errors for IV estimation:
all quantities in (8) can be consistently estimated given a
random sample; any modern metrics package computes
standard errors after any IV estimation.

2. (8) allows us to compare asymptotic variances of IV and OLS
est (when x and u are uncorrelated).
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IV: Statistical Inference
• More on the second point from last slide: under Gauss-Markov

assumptions, variance of OLS estimator is σ2/SSTx , while
that for IV is σ2/(SSTx · R2

x ,z ); these differ only in that R2
x ,z

appears in the denominator of the IV variance. Since R2 < 1,
IV variance is always larger than OLS variance (when OLS is
valid). If R2

x ,z is small, then the IV variance can be much
larger than the OLS variance. If x and z are only slightly
correlated, R2

x ,z can be small, and this can translate into a
very large sampling variance for the IV estimator. The more
highly correlated z is with x , the closer R2

x ,z is to one and the
smaller is the variance of the IV estimator. In the case that
z = x , R2

x ,z = 1 and we get the OLS variance, as expected.
Thus an important cost of performing IV estimation when x
and u uncorrelated: AVar of IV estimators is always larger and
sometimes much larger than the AVar of OLS estimators.

• See examples 15.1 & 15.2.
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IV: Statistical Inference
Qualitative Variables

Angrist & Krueger (1991): clever binary IV for educ . Quarter of
birth (1 if first, 0 otherwise) should be unrelated to error / ability,
but years of education vary systematically in population based on
quarter of birth due to compulsory school attendance laws.
Students born early in year start school older so reach compulsory
age with less education but no relationship for students who finish
high school. R2

x ,z is very small since years of education varies only
slightly across quarter of birth, so needed a very large sample size
(247199 men born between 1920 and 1929) to get a reasonably
precise IV estimates. Econometric critique: Bound, Jaeger & Baker
(1995): not obvious that season of birth is unrelated to unobserved
factors that affect wage. Even small amount of correlation between
z and u can cause serious problems for IV estimator.
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IV: Statistical Inference
Qualitative Variables

For policy analysis, endogenous explanatory variable is often binary, e.g.
Angrist (1990) studied effect that being a veteran in Vietnam War had
on lifetime earnings:

log (earns) = β0 + β1veteran+ u

where veteran is binary variable. Problem with OLS est here is there may

be self-selection problem (chapter 7): perhaps people who get most out

of military choose to join or decision to join is correlated with other

characteristics affecting earnings causing veteran and u to be correlated.

Angrist: Vietnam draft lottery provided natural experiment (chapter

13) that created IV for veteran. Random assignment: plausible that draft

lottery number is uncorrelated with error term u, but those with a low

enough number had to serve in Vietnam so probability of being a veteran

is correlated with lottery number. If both assertions are true, then draft

lottery number is a good IV candidate for veteran. Also possible to have

a binary endogenous explanatory variable and binary IV.
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Properties of IV with a Poor IV
While IV is consistent when z and u are uncorrelated and z and x
are positively/negatively correlated, IV suffers from large standard
errors especially if z and x are weakly correlated. Weak correlation
(weak identification) between z and x can have even more
serious consequences: IV estimates can have a large asymptotic
bias even if z and u are only moderately correlated. We can see
this by studying the plim of IV estimates when z and u are possibly
correlated. We can derive this in terms of population correlations
and standard deviations as

plim β̂1 = β1 +
Corr(z , u)

Corr(z , x)
· σu

σx
(9)

Even if Corr(z , u) is small, the inconsistency in the IV estimator
can be very large if Corr(z , x) is also small. So, even if we focus
only on consistency, it’s not necessarily better to use IV than OLS
if the correlation between z and u is smaller than that between x
and u.
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Properties of IV with a Poor IV
Using the fact that Corr(x , u) = Cov(x , u)/(σxσu) along with
Cov(x , u) 6= 0, we can write the plim of OLS estimator (β̃1) as:

plim β̃1 = β1 + Corr(x , u) · σu
σx

Comparing these formulae shows that IV is preferred to OLS on
asymptotic bias grounds when Corr(z , u)/Corr(z , x) < Corr(x , u).
Recall Angrist & Krueger (1991) where x is years of schooling and
z is binary indicator of quarter of birth, Corr(z , x) very small.
Bound, Jaeger & Baker (1995) discussed reasons why quarter of
birth and u might be somewhat correlated. From equation (9), we
see that this can lead to a substantial bias in the IV estimator.
When z and x are not correlated at all, things are especially bad
whether or not z is uncorrelated with u. Always check to see if the
endogenous explanatory variable is correlated with the IV
candidate – example 15.3.
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IV: R-squared

• Stata: R2 = 1− SSR/SST can be negative (if SSR > SST ).

• Not very useful to report R-squared for IV estimation.

• When x and u are correlated, can’t decompose variance of y
into β2

1Var(x) + Var(u) so R-squared has no natural
interpretation.

• These R-squareds can’t be used in usual way to compute F
statistics of joint restrictions.

• Goodness of fit is not a factor – goal of IV is to provide better
estimates of cet. par. effect of x on y when x and u are
correlated.

Copyright c© 2013 Michael Curran 19/28



Motivation Multiple Regression Summary & References

Lecture 7 Outline

Motivation
Omitted Variables

Multiple Regression
IV Estimation

Summary & References
Summary & References

Copyright c© 2013 Michael Curran 20/28



Motivation Multiple Regression Summary & References

IV Estimation in Multiple Regression

• Initially, only one explanatory variable is correlated with the
error:

y1 = β0 + β1y2 + β2z1 + u1 (10)

called a structural equation: emphasis on interest in the βj ,
i.e. equation is supposed to measure a causal relationship.

• Notation to distinguish endogenous from exogenous
variables.

• Assume E (u1) = 0. Use z1 to indicate that this variable is
exogenous in (10) (z1 is uncorrelated with u1).

• Use y2 to indicate that this variable is suspected of being
correlated with u1.

• Don’t specify why y2 and u1 are correlated, but think for now
of u1 as containing an omitted variable correlated with y2.

• Notation originates in SEM (chapter 16).
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IV Estimation in Multiple Regression
Example

log (wage) = β0 + β1educ + β2exper + u1 (11)

i.e. assume exper is exogenous in (11) but allow educ to be correlated
with u1 for usual reasons. As z1 uncorrelated with u1, can we use z1 as
an instrument for y2 assuming y2 and z1 are correlated? No.
Key ass are that z1 and z2 uncorrelated with u1, E (u1) = 0 (WLOG)
when equation contains an intercept:

E (u1) = 0,Cov(z1, u1) = 0,Cov(z2, u1) = 0 (12)

Latter two assumptions ≡ E (z1u1) = E (z2u1) = 0 so solve:
n

∑
i=1

(yi1 − β̂0 − β̂1yi2 − β̂2zi1) = 0 (13)

n

∑
i=1

zi1(yi1 − β̂0 − β̂1yi2 − β̂2zi1) = 0 (14)

n

∑
i=1

zi2(yi1 − β̂0 − β̂1yi2 − β̂2zi1) = 0 (15)

Estimators are called instrumental variables estimators.
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IV Estimation in Multiple Regression
Example

If think y2 exogenous and choose z2 = y2, these equations are
same as FOC for OLS. Still need IV z2 correlated with y2, but
correlation is complicated by presence of z1 in equation (10). Need
to state assumptions in terms of partial correlation. Easiest: write
endogenous explanatory variable as a linear function of the
exogenous variable and an error term:

y2 = π0 + π1z1 + π2z2 + v2 (16)

E (v2) = 0, Cov(z1, v2) = 0 and Cov(z2, v2) = 0 and πj are
unknown parameters. Key identification condition along with (12)
is:

π2 6= 0 (17)

i.e. after partialling out z1, y2 and z2 are still correlated.
Correlation can be positive or negative but not 0.
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IV Estimation in Multiple Regression
Example

Test (17): estimate (16) by OLS and use t test. Unfortunately,
can’t test that z1 and z2 are uncorrelated with u1; hopefully, we
can make the case based on economic reasoning or introspection.
Equation (16) is an example of a reduced form equation, i.e.
endogenous variables in terms of exogenous variables. Name comes
from SEM and distinguishes it from structural equation (10).
Question 15.2. Adding more exogenous explanatory variables to
the model is straightforward, structural model:

y1 = β0 + β1y2 + β2z1 + . . . + βkzk−1 + u1 (18)

where y2 is thought to be corr with u1. Let zk be a variable not
in (18) that’s also exogenous. So, we assume that:

E (u1) = 0,Cov(zj , u1) = 0, j = 1, . . . , k (19)
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IV Estimation in Multiple Regression
Example

Under (19), z1, . . . , zk−1 are exogenous variables appearing in (18).
These act as their own IV in estimating βj in (18). Special case k = 2
given in equations (13)- (15); along with z2, z1 appears in set of moment
conditions used to obtain IV estimates. More generally, z1, . . . , zk−1 used
in moment conditions along with IV for y2, zk . Reduced form for y2 is:

y2 = π0 + π1z1 + . . . + πk−1zk−1 + πkzk + v2 (20)

partial correlation between zk and y2:

πk 6= 0 (21)

Under (19) and (21), zk is a valid IV for y2. Don’t care about remaining

πj in (20); some or all of them could be zero. Minor additional

assumption is that there are no perfect linear relationships among the

exogenous variables; this is analogous to the assumption of no perfect

collinearity in context of OLS. Homogeneity of u1. Example 15.4.
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Summary

• IV yields consistent estimators under omitted variables.

• Weak identification: weak correlation between z and x .

• Structural equation measures a causal relationship (can have
endogenous variables on both sides).

• Reduced form equations express endogenous variables in terms
of predetermined (exogenous and / or lagged endogenous)
variables.

• Final form equations express endogenous variables in terms of
purely exogenous variables.
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References

• IV & 2SLS (i): Wooldridge 15.1-2.
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