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Introduction
• Limited dependent variable (LDV): a dependent variable

whose range of values is substantively restricted. Examples?
LPM.

• Drawbacks of LPM are overcome by logit and probit, though
they are more difficult to interpret.

• Alternative limited dep variables: optimizing behaviour often
leads to a corner solution response for some nontrivial
fraction of the population. Examples? Tobit model. Others:
count variable (Poisson regression models), sometimes observe
LDV due to data censoring (censored and truncated models).

• Finally, general problem of self-selection (nonrandom sample).
• LDV are fine for time series and panel data but most often

applied in cross sectional data; sample selection problems are
usually confined to cross sectional or panel data. My
coverage: cross sectional data. Prof Bénétrix will introduce
time series data and panel data.
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Link with Lecture 2

• Binary response continued from LPM: could call these three
‘binary response limited dep variable models.’

• Three problems with LPM: (i) fitted probabilities can lie
outside zero and one, (ii) constant partial effects of any
explanatory variable appearing in level form and (iii)
heterogeneity.

• First two limitations can be overcome by using more
sophisticated binary response models. In binary response
models, interest lies mainly in response probability:

P(y = 1|x) = P(y = 1|x1, x2, . . . , xk)

where x is full set of explanatory variables.
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Specifying logit and probit models
Overcoming first limitation of LPM

LPM: response probability is linear in a set of parameters βj :

P(y = 1|x) = β0 + β1x1 + . . . βkxk

Now consider a class of binary response models of the form:

P(y = 1|x) = G (β0 + β1x1 + . . . + βkxk) = G (β0 + xβ) (1)

where 0 < G (z) < 1 for all z ∈ R. Ensures estimated response
probabilities are strictly between zero and one.

xβ = β1x1 + . . . + βkxk

In logit model, G is the logistic function:

G (z) =
exp (z)

1 + exp (z)
= Λ(z)

which is between zero and one for all z ∈ R.
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Specifying logit and probit models
Overcoming first limitation of LPM

In the probit model, G is the standard normal CDF, which is
expressed as an integral:

G (z) = Φ(z) =
∫ z

−∞
φ(v)dv

where φ(z) is the standard normal density

φ(z) =
1

(2π)−
1
2

exp (−z2

2
)

G in logit and probit are both increasing functions. Each increases
most quickly at z = 0; G (z) −→ 0 as z −→ −∞ and G (z) −→ 1
as z −→ ∞.
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Specifying logit and probit models
Derivation

Can derive logit and probit models from underlying latent variable
model. Let y ∗ be an unobserved or latent variable:

y ∗ = β0 + xβ + e, y = 1[y ∗ > 0] (2)

where the indicator function 1[·] defines a binary outcome:

1[statement] =

{
1 if statement is true

0 otherwise

Assume e is independent of x and that e either has the standard
logistic distribution or the standard normal distribution. Either
way, e is symmetrically distributed about zero, so:

1− G (−z) = G (z) ∀z ∈ R

Probit is more popular since economists like the normality
assumption.
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Specifying logit and probit models
Derivation & Limitations

From (2) and our assumptions, we can derive response prob. for y :

P(y = 1|x) = P(y ∗ > 0|x) = P [e > −(β0 + xβ)|x]
= 1− G [−(β0 + xβ)] = G (β0 + xβ)

which is the same as (1).
Limitations: interpretation. Usual goal in applying binary response
models: explain effects of xj on P(y = 1|x). For logit and probit,
the direction of the effect of xj on E (y ∗|x) = β0 + xβ and on
E (y |x) = P(y = 1|x) = G (β0 + xβ) is always the same. But
latent variable y ∗ rarely has a well-defined unit of measurement, so
magnitudes of βj are not especially useful by themselves. Mostly,
we want to estimate effect of xj on P(y = 1|x), but that’s
complicated by the nonlinear nature of G ().
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Specifying logit & probit models
Partial effects

∂p(x)

∂xj
= g(β0 + xβ)βj (3)

Logit and probit: G () strictly increasing cdf and so g(z) > 0 ∀z so
partial effect of xj on p(x) depends on x through the positive
quantity g(β0 + xβ), which means that the partial effect always
has the same sign as βj . Equation (3) shows that relative effects
of any two continuous explanatory variables don’t depend on x:

ratio of partial effects for xj and xh is
βj

βh
. x1: binary explanatory

variable, then partial effect from changing x1 from zero to one
holding all other variables fixed is:

G (β0+ β1+ β2x2+ . . .+ βkxk)−G (β0+ β2x2+ . . .+ βkxk) (4)

This depends on all the values of the other xj . Sign of β1 is
sufficient to see if the program had a positive or negative effect,
but to find the magnitude, we must estimate the quantity in (4).
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Specifying logit & probit models
Partial effects

Can use (4) for other kinds of discrete variables (e.g. number of
children, xk), so effect on probability of xk going from ck to ck + 1:

G [β0+ β1x1+ β2x2+ . . .+ βk (ck + 1)]−G (β0+ β1x1+ β2x2+ . . .+ βkck )
(5)

Including e.g. z21 , log (z2) as explanatory variables:

P(y = 1|z) = G (β0 + β1z1 + β2z
2
1 + β3 log (z2) + β4z3)

Partial effect of z1 on P(Y = 1|z) is
∂P(y=1|z)

∂z1
= g(β0 + xβ)(β1 + 2β2z1) and for z2:

∂P(y=1|z)
∂z2

= g(β0 + xβ)( β3

z2
) where

xβ = β1z1 + β2z
2
1 + β3 log (z2) + β4z3. So, g(β0 + xβ)( β3

100 ) is
approximate change in response probability when z2 increases by
1%. Models with interactions among explanatory variables
(including those between discrete and continuous variables) are
handled similarly. Use (5) to measure effects of discrete variables.
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Estimating Logit & Probit Models
Unlike LPM, nonlinear nature of E (y |x) render OLS and WLS
inapplicable. Can use NLLS / NLWLS / maximum likelihood
estimation (MLE). With MLE, heteroscedasticity is accounted for.

f (y |xi ; β) = [G (xi β)]
y [1− G (xi β)]

1−y , y = 0, 1 (6)

Intercept is in vector x. When y = 1, we have G (xi β) and when
y = 0, we have 1− G (xi β). log-likelihood function for obs i is a
function of the parameters and the data (xi , yi ) and is simply the
log of (6):

`i (β) = yi log [G (xi β)] + (1− yi ) log [1− G (xi β)]

Since G () strictly between 0 and 1 for logit and probit, `i (β) is
well-defined for all values of β.

L(β) =
n

∑
i=1

`i (β) (7)

MLE of β: β̂ maximises (7).
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Estimating Logit & Probit Models

• If G () is standard logit cdf, then β̂ is logit estimator.

• If G () is standard normal cdf, then β̂ is probit estimator.

• Cannot write formulas due to the nonlinear nature of the
maximisation problem, which raises issues but MLE is
consistent, Asymptotically Normal and Asymptotically
Efficient.

• Each β̂j has asymptotic standard errors reported in most stat
packages and with these, we can construct asymptotic t tests
and confidence intervals.

• To test H0 : βj = 0, form t stat
β̂j

se(β̂j )
and carry out test

normally once decided on one or two sided alternative.
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Testing Multiple Hypotheses
3 ways to test multiple exclusion restrictions

Focus on exclusion restrictions.

1. LM / score test.

2. Wald test requires estimation of only the unrestricted model.
In linear model case, Wald statistic after a simple
transformation is the F stat so no need to cover Wald statistic
separately. Wald statistic is computed by econometrics
packages allowing for exclusion restrictions to be tested after
unrestricted model has been estimated. It has asymptotic
chi-square dist with degrees of freedom equal to number of
restrictions being tested.

3. If both restricted and unrestricted models are easy to
estimate, then likelihood ratio (LR) test is attractive.
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Testing Multiple Hypotheses
LR Test

• Same concept as F in linear model.

• F measures increase in SSR when variables are dropped from
model.

• LR test is based on difference in log-likelihood functions for
unrestricted and restricted models.

• Idea: because MLE max log-likelihood, dropping variables
generally leads to a smaller or at least no larger log-likelihood.

LR = 2(Lur −Lr ) (8)

• Since Lur ≥ Lr , LR is nonnegative and usually strictly
positive; it has an approximate chi-square distribution under
H0 and if we are testing q exclusion restrictions, LR

a∼ χ2
q.

• Question 17.1, Wooldridge.
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Interpreting Estimates
Percent Correctly Predicted

Should report coefficient, SE and value of log-likelihood function.
For LPM, goodness-of-fit measure is percent correctly predicted.
Define binary predictor of yi to be one if predicted prob is at least
.5 and zero otherwise, i.e. ỹi = 1 if G (β̂0 + xiβ) ≥ .5 and ỹi = 0 if
G (β̂0 + xiβ) < .5. Given {ỹi : i = 1, . . . , n}, we can see how well
ỹi predicts yi across obs. Four possible outcomes on each pair
(yi , ỹi ) and when both are zero or both are one, we make the
correct prediction. In the two cases where one of the pair is zero
and the other is one, we make the incorrect prediction. The
percent correctly predicted is the percentage of times that ỹi = yi .
Can be misleading though, e.g. get high percentages correctly
predicted even when least likely outcome is very poorly predicted.
Also compute the percent correctly predicted for each of the
outcomes.
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Interpreting Estimates
Percent Correctly Predicted

Criticism: threshold value of .5 especially when one of the
outcomes is unlikely, e.g. if ȳ = 0.08 (only 8% successes in
sample) it could be that we never predict yi = 1 since estimated
probability of success is never greater than .5.
One alternative: use fraction of successes in sample as threshold
(e.g. .08 on page 589), i.e. define ỹi = 1 when G (β̂0 + xiβ) ≥ .08
and zero otherwise. Using this rule will certainly increase the
number of predicted successes, but not without cost: we will
necessarily make more mistakes – perhaps many more – in
predicting zeros (failures).
Another alternative: choose threshold so fraction of ỹi = 1 in
sample is same / close to ȳ , i.e. search over threshold values
τ : 0 < τ < 1 so if define ỹi = 1 when G (β̂0 + xiβ) ≥ τ then

∑n
i=1 ỹi ≈ ∑n

i=1 yi .
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Interpreting Estimates
Pseudo R-squared

Various pseudo R-squared measures exist for binary response.
McFadden (1974): 1− Lur

L0
where Lur is log-likelihood for

estimated model and L0 is that in model with only an intercept.

Note Lur
L0

= |Lur |
|L0| . Also, |Lur | ≤ |L0|. If covariates have no

explanatory power, then Lur
L0

= 1 and pseudo R-squared is zero.

Usually, |Lur | < |L0| so 1− Lur
L0

> 0. If Lur = 0, pseudo
R-squared is one. Lur can’t reach zero in probit or logit model.
Alternative pseudo R-squareds for probit and logit are more directly
related to usual R2 from OLS in LPM. Let ŷi = G (β̂0 + xiβ̂).
These estimate E (yi |xi), so can base R-squared on how close ŷi
are to yi . Could compute squared correlation between yi and ŷi .
Directly comparable to usual R2 form of estimation of a LPM.
Goodness-of-fit is usually less important than trying to obtain
convincing estimates of the cet par effects of the explanatory
variables.
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Interpreting Estimates
Partial Effects

∆ ̂P(y = 1|x) ≈ [g(β̂0 + xβ̂)β̂j ]∆xj (9)

Cost of logit and probit: partial effects in (9) harder to summarize
since scale factor g(β̂0 + xβ̂) depends on x (all of the explanatory
variables). One fix: plug in values for xj like means, medians, mins,
maxs, lower and upper quartiles and see how g(β̂0 + xβ̂) changes.
Attractive, but tedious and results in too much info even if number
of explanatory variables is moderate. Quick way to get magnitudes
of partial effects: use single scale factor to multiply each β̂j . One
method in econometrics packages: replace each explanatory
variable with sample average, i.e. adjustment factor is:

g(β̂0 + x̄β̂) = g(β̂0 + β̂1x̄1 + β̂2x̄2 + . . . + β̂k x̄k) (10)

where g() is N(0,1) (probit) and g(z) = exp (z)
[1+exp (z)]2

(logit).

Idea: when (10) is multiplied by β̂j , we get partial effect of xj for
average person in sample.Copyright c© 2013 Michael Curran 21/31
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Interpreting Estimates
Partial Effects

Two potential problems with this motivation:

1. If some explanatory variables are discrete, average of them
represents no one in sample (or population). Example?

2. If a continuous explanatory variable appears as a nonlinear
function (e.g. natural log or quadratic), it’s not clear whether
we want to average the nonlinear function or plug the average
into the nonlinear function. E.g., should we use log (sales) or
log sales? Econometrics packages computing scale factor as
above default to the former: software is written to compute
the average of the regressors included in the probit or logit
estimation.

Different approach to computing a scale factor circumvents issue
of which values to plug in for explanatory variables. Instead,
second scale factor results from averaging the individual partial
effects across sample (average partial effect) [APE].
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Interpreting Estimates
Partial Effects

xj continuous, APE is:

1

n

n

∑
i=1

[g(β̂0 + xiβ̂)β̂j ] =

[
1

n

n

∑
i=1

g(β̂0 + xiβ̂)

]
β̂j (11)

Term multiplying β̂j acts as a scale factor. In the probit case

g(β̂0 + xiβ̂) = φ(β̂0 + xiβ̂) and g(β̂0 + xiβ̂) =
exp (β̂0+xi β̂)

[1+exp (β̂0+xi β̂)]2
in

the logit case. The two scale factors differ since here we are using
the average of the nonlinear function (11) rather than the
nonlinear function of the average (10). Neither make much sense
for discrete explanatory variables; better to use equation (5) to
directly estimate the change in the probability. For a change in xk
from ck to ck + 1, discrete analog of partial effect based on (10) is
given by:

G [β̂0 + β̂1x̄1 + . . . + β̂k−1x̄k−1 + β̂k (ck + 1)]−G (β̂0 + β̂1x̄1 + . . . + β̂k−1x̄k−1 + β̂kck )
(12)

For binary xk , equation (12) is computed by Stata.
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Interpreting Estimates
Partial Effects

APE (more comparable to LPM) is given by:

1

n

n

∑
i=1

G [β̂0 + β̂1xi1 + . . . + β̂k−1xik−1 + β̂k (ck + 1)]−G (β̂0 + β̂1xi1 + . . . + β̂k−1xik−1 + β̂k ck (13)

Obtaining (13) for probit or logit is simple:

1. For each obs, estimate probability of success for the two
chosen values of xk , plugging in actual outcomes for other
explanatory variables (so have n estimated differences).

2. Average the differences in estimated probabilities across all
observations.

3. If xk is binary, plug in one and zero as the only two possible
values.
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Interpreting Estimates
Partial Effects

• When using logit, probit or LPM, it makes sense to compute
scale factors for probit and logit in making comparisons of
partial effects.

• But may want a quicker way to compare magnitudes of the
different estimates.

• Probit: g(0) ≈ .4 and logit: g(0) = .25 so to make the
magnitudes of probit and logit roughly comparable, we can
multiply the probit coefficients by .4

.25 = 1.6 or we can
multiply the logit estimates by .625.

• In LPM, g(0) is effectively one, so logit slope estimates can
be divided by 4 to make them comparable to LPM estimates
and probit slope estimates can be divided by 2.5.

• Still, most cases, want more accurate comparisons obtained
by using scale factors (term multiplying βj in (11)) for logit
and probit.

Copyright c© 2013 Michael Curran 25/31



Introduction Estimation Testing Interpretation Summary & References

Interpreting Estimates

• Example 17.1. Question 17.2. Figure 17.2.

• Same issues concerning endogenous explanatory variables in
linear models arise in logit/probit.

• Not cover them, but possible to test and correct using
methods related to 2SLS, (Evans and Schwab, 1995).

• Link to lecture 8 on 2SLS.
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Interpreting Estimates
Further Limitations

Further limitations (probit) – misspecification problems in latent
variable models:

1. Nonnormality of e in latent variable model: if e doesn’t have
standard Normal distribution, response probability will not
have probit form. Since the response probability is unknown,
we couldn’t estimate the magnitude of partial effects even if
we had consistent estimates of the βj .

2. Heteroscedasticity in e: if var(e|x) depends on x, response
probability no longer has form G (β0 + xβ); instead, it
depends on form of the variance and requires more general
estimation. Such models are not often used in practice since
logit and probit with flexible functional forms in the
independent variables tend to work well.
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Interpreting Estimates
Final Comments

• Binary response models apply to time series and panel data
(independent but not necessarily identically distributed).

• Logit and probit also used to evaluate impact of certain
policies in context of a natural experiment.

• Recently popular: logit and probit with unobserved effects
(done in ‘Advanced’ Wooldridge).
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Summary

• Specifying binary response: logit & probit overcome LPM
drawbacks but difficult to interpret.

• Nonlinear estimation techniques necessary, e.g. MLE.

• Test multiple hypotheses via LM / Wald / LR tests.

• Goodness-of-fit measure: percent correctly predicted &
pseudo R2.

• Can interpret estimates via partial effects, e.g. APE.
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References

• Logit & Probit Models: Wooldridge 17.1.
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