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Censored & Truncated Regression Models
Introduction

Data observability taken into account.
Distinction between lumpiness in an outcome variable and
problems of data censoring can be confusing; Wooldridge has Tobit
only for corner solution outcomes but literature on Tobit models
usually treats another situation within same framework: response
variable censored above or below some threshold.
Survey design and institutional constraints.
Solve data censoring by applying a censored regression model –
problem solved by censored regression model is one of missing data
on response variable y but where we have info about the variable
when it is missing, viz. whether it is above or below a known
threshold. A truncated regression model arises when we exclude
on the basis of y a subset of the population in our sampling scheme
– we’ve not got a random sample from the population but we know
the rule that was used to include units in the sample. This rule is
determined by whether y is above or below a certain threshold.
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Censored & Truncated Regression Models
Censored Regression Models

Focus on censored normal regression model. y follows CLM
and letting i emphasise a random draw from the population:

yi = β0 + xi β + ui ui |xi , ci ∼ N(0, σ2) (1)

wi = min (yi , ci ) (2)

Only observe yi if it is less than a censoring value ci : censoring
from above (right censoring); censoring from below (left
censoring) is handled similarly. Example of right data censoring is
top coding – we know its value only up to a certain threshold; for
responses greater than the threshold, we only know the variable is
at least as large as the threshold. E.g. family wealth in some
surveys is top coded: can respond ‘more than $500, 000’, in this
e.g. ci censoring threshold is same for all i ; in many cases, ci
changes with individual/family characteristics.
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Censored & Truncated Regression Models
Censored Regression Models

Censoring induces problems: OLS regression using only uncensored
observations (i.e. only those with yi < ci ) produces inconsistent
estimates of βj . OLS regression of wi on xi using all observation
doesn’t consistently estimate βj unless there is no censoring –
similar to Tobit but problem is much different. In Tobit, we are
modeling economic behaviour, which often yields zero outcomes
but the Tobit model is supposed to reflect this; with censored
regression, we have a data collection problem since for some reason
the data are censored.
Under assumptions (1) and (2), we can estimate β and σ2 by ML
given a random sample (xi , wi ). Need density of wi given (xi , ci ).
For uncensored observations wi = yi and the density of wi is the
same as yi . For censored observations, we need:

P(wi = ci |xi ) = P(yi ≥ ci |xi ) = P(ui ≥ ci − xi β) = 1−Φ[
(ci − xiβ)

σ
]
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Censored & Truncated Regression Models
Censored Regression Models

Combine these two parts to obtain density of wi given xi and ci :

f (w |xi , ci ) =

1−Φ
[
(ci−xi β)

σ

]
w = ci

1
σ φ

[
(w−xi β)

σ

]
w < ci

Log-likelihood for observation i is obtained by taking the natural
log of the density for each i . Can maximise the sum of these
across i wrt βj and σ to get MLEs. Interpret βj just as in linear
reg under random sampling – much different to Tobit where
expectations of interest are NL functions of the βj .
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Censored & Truncated Regression Models
Censored Regression Models

• Duration analysis: a duration is a variable measuring time
before a certain event occurs (e.g. days before felon is released
– may never happen for some felons or may happen after so
long that we must censor the duration to analyse data).

• Logarithm of dependent variable (censoring threshold) as
in (2), so parameters can be interpreted as percentage change.

• Alternatives exist for measuring effects of each explanatory
variable on duration rather than only expected duration.

• If any assumptions of censored normal regression model are
violated (e.g. heterogeneity / non-Normality), MLEs are
generally inconsistent. So censoring is potentially very costly
as OLS using uncensored sample requires neither Normality
nor homogeneity for consistency. There are methods that do
not require us to assume a distribution, but they are more
advanced.
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Censored & Truncated Regression Models
Truncated Regression Models

Difference to censored regression model: don’t observe any
information about a certain segment of the population. The
truncated normal regression model begins with an underlying
population model that satisfies CLM assumptions:

y = β0 + xβ + u u|x ∼ N(0, σ2) (3)

Under (3), given random sample from population, OLS is most
efficient estimation procedure. Problem: don’t observe a random
sample from population – assumption MLR.2 is violated. A
random draw (xi , yi ) is only observed if yi ≤ ci , where ci is
truncated threshold that can depend on exogenous variables, in
particular xi so if {(xi , yi ) : i = 1, . . . , n} is our observed sample,
then yi is necessarily less than or equal to ci . Important: this
differs from the censored regression model since there we observe
xi for any randomly drawn observation from the population; in
truncated model, we only observe xi if yi ≤ ci .
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Censored & Truncated Regression Models
Truncated Regression Models

Estimation (βj and σ)

g(y |xi , ci ) =
f (y |xi β, σ2)

F (ci |xi β, σ2)
y ≤ ci (4)

f () ∼ N(β0 + xi β, σ2) and F is a Normal cdf with same mean and
variance evaluated at ci . Renormalise density by dividing by area
under f (·|xi β, σ2) that is to the left of ci . Take log of (4), sum
across i and maximise result wrt βj and σ2, get MLEs, leading to
consistent, approximately Normal estimators; inference is standard.

Copyright c© 2013 Michael Curran 9/27



Censored & Truncated Models Sample Selection Summary & References

Censored & Truncated Regression Models
Truncated Regression Models

• Can analyse data from example 17.4 as truncated sample if
drop all observations whenever it is censored.

• However, we’d never analyse duration data (or top-coded
data) in this way since it eliminates useful info: fact that we
know lower bound for 893 durations along with explanatory
variables is useful info and censored regression uses this info
while truncated regression doesn’t.

• Note: OLS applied to a sample truncated from above
generally gives est biased towards 0.

• Like censored regression, if homogeneity and Normality
assumptions in (3) are violated, truncated Normal MLE is
biased and inconsistent.

• Methods not requiring these assumptions are available (see
‘Advanced’ Wooldridge).
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Sample Selection Corrections
Truncated regression is a special case of a general problem:
nonrandom sample selection. Survey design is not the only
cause of this – respondents fail to answer some questions, which
leads to missing data for dependent / independent variables; since
we can’t use these observations, we wonder if dropping them leads
to bias in our estimators.
Another general e.g.: incidental truncation – not observe y
because of the outcome of another variable, e.g. wage offer
function estimations: how factors affect wage you could earn, but
only observe wage offer for those in workforce. Since working may
be correlated with unobservables that affect wage offer, using only
working people might produce biased estimates of parameters in
wage offer equation. Nonrandom sample selection may arise in
panel data, e.g. with two years of data, due to attrition, some
people leave sample – particular problem in policy analysis, where
attrition may be related to effectiveness of a program.
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Conditions for consistency of OLS on selected sample

Truncated Tobit: endogenous sample selection and OLS biased and
inconsistent. If sample determined solely by an exogenous
explanatory variable, we’ve exog sample selection. Cases between
extremes are less clear. Population model:

y = β0 + β1x1 + . . . + βkxk + u E (u|x1, x2, . . . , xk) = 0 (5)

Population model for for a random draw :

yi = xi β + ui (6)

Let n be size of random sample from population. If observe yi and
each xij for all i , then use OLS.
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Conditions for consistency of OLS on selected sample
Now assume either yi or some of the independent variables are not
observed for some i . For at least some observations, observe full
set of variables. Define a selection indicator si for each i by si = 1
if we observe all of (yi , xi ) and si = 0 otherwise, so si = 1 implies
use observation in our analysis and si = 0 means the observation
will not be used.
Interest: statistical properties of OLS estimates using the selected
sample, i.e. using observations for which si = 1, so use fewer than
n obs (ni ). Easy to get conditions where OLS consistent and
unbiased. Rather than estimate (6), we can only estimate:

siyi = sixi β + siui (7)

When si = 1, we’ve (6); when si = 0, we’ve 0 = 0 + 0 and this
tells us nothing about β. Regressing siyi on sixi for i = 1, 2, . . . , n
is same as regressing yi on xi using observations when si = 1 so
can learn about consistency of β̂j by studying (7) on a random
sample.
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Conditions for consistency of OLS on selected sample

OLS estimates from (7) are consistent if error term has zero mean
and is uncorrelated with each explanatory variable. In population,
0 mean assumption is E (su) = 0 and zero correlation assumption:

E [(sxj )(su)] = E (sxju) = 0 (8)

where s, xj and u are random variables representing the population
and we used the fact that s2 = s since s is binary. Condition (8) is
different from what we need if we observe all variables for a
random sample E (xju) = 0 so in population we need u to be
uncorrelated with sxj . Key cond for unbiasedness:
E (su|sx1, . . . , sxk) = 0, which (as usual) is a stronger assumption
than that needed for consistency.
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Conditions for consistency of OLS on selected sample
If s is a function only of the explanatory variables, then sxj is just a
function of x1, x2, . . . , xk ; by conditional mean assumption (5), sxj
is also uncorrelated with u. Actually since E (u|x1, . . . , xk) = 0,
E (su|sx1, . . . , sxk) = sE (u|sx1, . . . , sxk) = 0. This is the case of
exogenous sample selection, where si = 1 is determined entirely
by xi1, . . . , xik . If sample selection is entirely random in the sense
that si is independent of (xi, ui ), then ∵ E (xju) = 0 under (5),
E (sxju) = E (s)E (xju) = 0. So, beginning with a random sample
and randomly dropping observations, OLS is still consistent and is
unbiased in this case if there is no perfect multicollinearity in the
selected sample. If s depends on explanatory variables and extra
random terms that are independent of x and u, OLS is consistent
and unbiased. Conditional on explanatory variables, s ⊥⊥ u so
E (u|x1, . . . , xk , s) = E (u|x1, . . . , xk) and the last is 0 by
assumption on population model. If we add homogeneity
assumption E (u2|x, s) = E (u2) = σ2, then usual OLS SE and test
statistics are valid. Copyright c© 2013 Michael Curran 16/27
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Conditions for consistency of OLS on selected sample
When is OLS on selected sample inconsistent? When truncated
from above: si = 1 if yi ≤ ci or equivalently si = 1 if
ui ≤ ci − xi β. Since si depends directly on ui , si and ui won’t be
uncorrelated even conditional on xi . This is why OLS on selected
sample doesn’t consistently estimate βj . There are less obvious
ways that s and u can be correlated – consider them in next
subsection. Results on consistency of OLS extend to IV (lectures
7-8). If IVs are denoted zh in the population, the key condition for
consistency of 2SLS is E (szhu) = 0, which holds if E (u|z, s) = 0.
Thus, if selection is determined entirely by exogenous variables z,
or if s depends on other factors that are independent of u and z,
then 2SLS on selected sample is generally consistent. Need to
assume explanatory and IV are appropriately correlated in selected
part of population. When selection is entirely a function of
exogenous variables, MLE of a nonlinear model (e.g. logit/probit)
produces consistent, asymptotically Normal estimates and the
usual SE and test statistics are valid.Copyright c© 2013 Michael Curran 17/27
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Incidental Truncation
Start with population model (5). However, assume always observe
explanatory variables xj. Problem: only observe y for subset of
population. Rule determining whether we observe y does not
depend directly on outcome of y . E.g. y = log (wageo) where
wageo is wage offer or hourly wage individual could receive in
labour market. Can only observe if working: wage offer is assumed
to be observed wage so truncation of wage offer is is incidental
because it depends on another variable, viz labour force
participation. NB: we’d generally observe all other info about an
individual, e.g. education, prior experience, gender, marital status,
etc. Usual approach to incidental truncation is to add an explicit
selection equation to population model of interest:

y = xβ + u E (u|x) = 0 (9)

s = 1[zγ + ν ≥ 0] (10)

where s = 1 if observe y and 0 otherwise. Assume elements of x
and z are always observed.Copyright c© 2013 Michael Curran 18/27
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Incidental Truncation

• Interest: (9) and estimate β by OLS given a random sample.

• Selection equation (10) depends on observed variables zh and
an unobserved error ν.

• Standard assumption is z is exogenous in (9):

E (u|x, z) = 0

• NB: let x be a strict subset of z: any xj is also an element of
z and we’ve some elements of z that are not also in x.

• Assume ν ⊥⊥ z (thus ⊥⊥ x) and ν ∼ N(0, 1).
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Incidental Truncation
Correlation between u and ν generally causes a sample selection
problem: assume (u, v) ⊥⊥ z, using x strict subset of z take:

E (y |z, ν) = xβ + E (u|z, ν)
(u,ν)⊥⊥z
= xβ + E (u|ν)

If (u,ν) jointly Normal (0 mean), then E (u|ν) = ρν

E (y |z, ν) = xβ + ρν

Don’t observe ν, but we can use this equation to compute
E (y |z, s) and then specialise this to s = 1 to get

E (y |z, s) = xβ + ρE (ν|z, s)

Since s and ν are related by (10) and ν ∼ N(0, 1), we can show
that E (ν|z, s) is simply inverse Mills ratio λ(zγ) when s = 1, so:

E (y |z, s = 1) = xβ + ρλ(zγ)

Want to estimate β and this shows we can using only the selected
sample as long as we include the term λ(zγ) as an additional
regressor. Copyright c© 2013 Michael Curran 20/27
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Incidental Truncation

• If ρ = 0, λ(zγ) doesn’t appear and OLS of y on x using
selected sample consistently estimates β. Else, we’ve omitted
a variable λ(zγ), which is generally corr with x.

• When does ρ = 0? When u and ν are uncorrelated.

• Since γ is unknown, we can’t evaluate λ(ziγ) for each i , but
from assumptions, s given z follows probit:

P(s = 1|z) = Φ(zγ)

• Estimate γ by probit of si on zi using entire sample.

• In second step, we can estimate β.

• This is called the Heckit method – Heckman 1976, Nobel in
2000 for this (sample selection correction).
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Incidental Truncation
Heckit method – sample selection correction

1. Using all n observations, estimate probit of si on zi and obtain
estimates γ̂h. Compute inverse Mills ratio λ̂i = λ(zi γ̂) for
each i . (Actually, only need these for i with si = 1.)

2. Using selected sample, i.e. observations for which si = 1 (say
n1 of them), run the regression of yi on xi , λ̂i .

The β̂j are consistent and approximately Normally distributed.
Simple test of selection bias is available from regressing yi on xi ,
λ̂i : use usual t statistic on λ̂i as a test of H0 : ρ = 0. Under H0,
there’s no sample selection problem. ρ 6= 0 =⇒ OLS SE from this
regression aren’t exactly correct since they don’t account for
estimation of γ, which uses same observations in this regression
and more.
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Incidental Truncation
Implications of x being a strict subset of z

1. Any element appearing as explanatory variable in (9) should
also be an explanatory variable in selection equation. Rare
cases: sense to exclude elements from selection equation, but
including all elements of x in z is not very costly; extending
them can lead to inconsistency if they’re incorrectly excluded.

2. At least one element of z is not also in x so need a variable
that affects selection but does not have a partial effect on y .
Not absolutely necessary to apply the procedure (can carry
out two steps when z = x) but results usually less than
convincing unless have an exclusion restriction in (9). Reason:
inverse Mills ratio is a nonlinear function of z but it’s often
well approx by a linear function. If z = x, λ̂i can be highly
correlated with elements of xi , leading to very high SE for β̂j .
Intuitively, if we’ve no variable that affects selection but not
y , it’s really hard (almost impossible) to distinguish sample
selection from misspecified functional form in (9).Copyright c© 2013 Michael Curran 23/27
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Incidental Truncation
Implications of x being a strict subset of z

Alt to 2-step estimation: full MLE. More complicated since need
joint dist of y and s. What makes sense is to test for sample
selection using the 2-step procedure and if find no evidence of
sample selection, then no reason to continue; else either use 2-step
estimation or estimate regression and selection equations jointly by
MLE. This approach has adv of using more info but is less widely
applicable.
Many more topics re-sample selection. One: models with
endogenous explanatory variables in addition to possible sample
selection bias. Single endogenous explanatory variable:

y1 = α1y2 + z1β1 + u1

where yi is obs when s = 1 and y2 may only be obs along with y1.
Example?
Instrumental Variables and Two Stage Least Squares.
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Summary

• With censored regression, we have info when y missing (e.g.
top coding).

• Requires MLE but complicated if assumptions of censored
normal regression model are violated.

• Application: duration analysis (time before event occurs).

• With truncated regression (non-random sample), we only
know inclusion rule – not even know how many variables are
missing – only observe (xi , yi ) if yi ≤ ci .

• Requires MLE but complicated if assumptions of truncated
normal regression model are violated.

• Nonrandom sample selection (truncated regression is a special
case) and incidental truncation motivate sample selection
corrections (e.g. Heckit method).
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References

• Censored & Truncated Regression Models: Wooldridge 17.4.

• Sample Selection Correction: Wooldridge 17.5.
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